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Overview

Robust inference on a slope coefficient(s) in a linear IV regression

"Robust" means uniform control of null rejection probability over all "em-
pirically relevant" parameter constellations

"Weak instruments"

— pervasive in applied research (Angrist and Krueger, 1991)

— adverse effect on estimation and inference (Dufour, 1997; Staiger and
Stock 1997)



Large literature on "robust inference" for the full parameter vector

Here: Consider subvector inference in the linear IV model, allowing for
weak instruments

First assume (almost) conditional homoskedasticity

— then relax to general Kronecker-Product structure

— then allow for arbitrary forms of conditional heteroskedasticity
Presentation based on two papers; one being "A more powerful subvector

Anderson and Rubin test in linear instrumental variables regression under
conditional homoskedasticity"



e Focus on the Anderson and Rubin (AR, 1949) subvector test statistic:
— "History of critical values":
— Projection of AR test (Dufour and Taamouti, 2005)

— Guggenberger, Kleibergen, Mavroeidis, and Chen (2012, GKMC) pro-

vide power improvement:

Using X%—mw,l—a as critical value, rather than X%,l—a still controls

asymptotic size

"Worst case" occurs under strong identification

e HERE: consider a data-dependent critical value that adapts to strength

of identification



e Show: controls finite sample/asymptotic size & has uniformly higher
power than method in GKMC

e One additional main contribution : computational ease

e Implication: Test in GKMC is "inadmissible"



Presentation

e Introduction: V'

e finite sample case

a) myy = 1 : motivation, correct size, power analysis (near optimality
result)

b) my > 1 : correct size, uniform power improvement over GKMC

c) refinement



e asymptotic case:
a) (almost) conditional homoskedasticity
b) general Kronecker-Product structure

c) general case (arbitrary forms of conditional heteroskedasticity)



Model and Objective (finite sample case)
y = YB+Wnry+e,
Y = Zlly + Vy,
W = Zlyw + Vi,

y € R",Y € R™™ (end or ex), W € R™™W (end), Z € R"*F (IVs)

e Reduced form:

(steW):Z(I'IysI'IW)< —l—\(vysVysVW)/,

~

e

8. Imy 0O )
V0

where vy =€ + V38 + Viyy.

e Objective: test
Hg : B = B versus Hy : B # Bp-



s.t. size bounded by nominal size & "good" power

Parameter space:

1. The reduced form error satisfies:

Vi ~iid. N(0,Q), i=1,....n,

where Q € R(m+1)x(m+1) is assumed to be known and positive definite.

2. 7 c Rk fixed, and Z'Z > 0 k X k matrix.

e Note: no restrictions on reduced form parameters Iy and Iy, — allow
for weak IV



e Several robust tests available for full vector inference
Ho : B = Bg,7 = 7o vs Hy : not Hy

including AR (Anderson and Rubin, 1949), LM, and CLR tests, see Kleiber-
gen (2002), Moreira (2003, 2009).

e Optimality properties: Andrews, Moreira, and Stock (2006), Andrews,
Marmer, and Yu (2018), and Chernozhukov, Hansen, and Jansson (2009)



Subvector procedures

Projection: "inf" test statistic over parameter not under test, same critical
value — "computationally hard" and "uninformative"

Bonferroni and related techniques: Staiger and Stock (1997), Chaud-

huri and Zivot (2011), McCloskey (2012), Zhu (2015), Andrews (2017),
...; often computationally hard, power ranking with projection unclear

Plug-in approach: Kleibergen (2004), Guggenberger and Smith (2005)...Re-
quires strong identification of parameters not under test.

GMM models: Andrews, I. and Mikusheva (2016)



e Models defined by moment inequalities: Gafarov (2016), Kaido, Molinari,
and Stoye (2016), Bugni, Canay, and Shi (2017), ...



The Anderson and Rubin (1949) test

AR test stat for full vector hypothesis

Ho: 8 = B,y =0 vs Hy : not Hy
AR statistic exploits EZ;e; = 0
AR test stat:

(y — YBg — Wno)'Pz(y — YBg — Wro)
(15 — B : —76)Q(15 — Bp : —76>

ARn(Bo,v0) =

AR stat is distri. as X% under null hypothesis; critical value X% 1—a



e Subvector AR statistic for testing Hy is given by

Yo—WrA)YPy(Yog—W
ARn (Bg) = min ( 0 ’Y/) z(Yo ,7) .
yeR™W (1: —Bp: —)Q(1: —By: —7)
where Yo =y — Y 3.

o Alternative representation (using Kmin(A) = min, 1,11 =’ Ax):

AR” (/80) — I%pa

where &; for : = 1,...,p = 1 4+ myy be roots of characteristic polynomial

N K

klp — Q(Bg) Y2 (70 5 W)/PZ (70 5 W> Q (50)_1/2' =0,



ordered non-increasingly, where we define variance matrix of (Y g;, Vij/;)’

as
1 0\’ 1 0
QBo)=|-Bo 0 | Q2|—-By O
0 Imy 0 Imy

e When using X% 1—o critical values, as for projection, trivially, test has
correct size;

GKMC show that this is also true for X%—mw 1_, Critical values



e Next show: AR statistic is the minimum eigenvalue of a non-central
Wishart matrix

e For par space above, the roots &; solve

, =1 ..,p=14+my,

0= ’?"’illerW — ==
where
=~ N(M, I ® Ip),
and M is a k X p.

e Under Hy, the noncentrality matrix becomes M = (Ok, @W) , Where

~1/2

Oy = (Z’Z)l/ ? My e

_ / —1
2VipVive = ZVipViy — LeVyy Oce ZeViy



and
/

- Sy 1 0 1 0
W) = | - 0 | Qf-— 0
<Z’€V zVWVW> _BO _50
W Y Amy Y Amy,

e Summarizing, under Hp the p X p matrix
== AW (k Ip, M’M) ,

has non-central Wishart with noncentrality matrix

, {0 0
MM_<0 @’w@W>

and

ARn (Bo) = ’§3min(E/E



e The distribution of the eigenvalues of a noncentral Wishart matrix only
depends on the eigenvalues of the noncentrality matrix M’M.

e Hence, distribution of &; only depends on the eigenvalues of @Q/V@W, K;
say, t =1,...,mpy and kK = (K1, ..., Kmyy)

o When myy =1, k = k1 = O, Oy is scalar.



Theorem: Suppose myy = 1. Then, under the null hypothesis Hgy : 8 = By,
the distribution function of the subvector AR statistic, ARy, (8g) , is monoton-
ically decreasing in the parameter k1.
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Figure 1: The cdf of the subset AR statistic with £ = 3 instruments, for
different values of k1 = 5,10, 15,100



New critical value for subvector Anderson and Rubin test: myy =1

e Relevance: If we knew 1 we could implement the subvector AR test with
a smaller critical value than X%—mw,l—a which is the critical value in the

case when k1 is "large".

e Muirhead (1978): Under null, when 1 "is large", the larger root K1 (which
measures strength of identification) is a sufficient statistic for x1

e More precisely: the conditional density of ARy, (Bg) = Rp given k1 can
be approximated by

Faoliy () ~ fra (2) (R — 2)1/2 g (A1),



where fxg is the density of a X%—l and g is a function that does not
k—1
depend on k1.

e Analytical formula for g

e The new critical value for the subvector AR-test at significance level 1 —a
Is given by

1 — « quantile of (approximation of ARy, given K1)

e Denote cv by

Cl—oz(l%la k — mW)

Depends only on a,, Kk — myy, and &1



Conditional quantiles can be computed by numerical integration

Conditional critical values can be tabulated — implementation of new test
is trivial and fast

They are increasing in A1 and converging to quantiles of X%—l

We find, by simulations over fine grid of values of x1, that new test

1(ARn (Bg) > c1—alR1, k — myy))

controls size

It improves on the GKMC procedure in terms of power



e Theorem: Suppose myy = 1. The new conditional subvector Anderson
Rubin test has correct size under the assumptions above.

e Proof partly based on simulations; Verified for e.g. o € {1%,5%,10%}
and k — myy € {1,...,20}.

e Summary my = 1: the cond’l test rejects when
Ro > c1-alR1,k — 1),
where (A1, Ro) are the eigenvalues of 2x2 matrix ='= ~ W (k, I, M'M) ;

Under the null M’M is of rank 1: test has size «
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Table of conditional critical values cv=cq_,(R1,k — myy)

a=5%, k—mpy =4
ki o | Rk c¢ov| Ky | KR cv k1 cv ki1 v
022 02200 18(392 34610 50| 895 6.6 | 1446 8.2
0.44 04223 20417 36641 52| 940 68| 15.88 8.4
065 006|246 222|443 38673 54| 989 7.0| 17.85 8.6
087 08270 24469 40|705 561042 7.2 | 20.89 8.8
1.10 1.0{294 26|49 42739 581101 74| 2642 9.0
1.32 1.2 318 28524 44775 6.0|1168 7.6 | 39.82 9.2
154 141|342 3.0|552 46813 6.2|1244 7.8| 11476 9.4
1.77 16 | 367 3.2 |581 48852 64|1335 80| +.Inf 95

* For simplicity of implementation we suggest linear interpolation of tabulated
cvs; we verify resulting test has correct size
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Null rejection frequency of subset AR test based on conditional (red) and
Xl%—l (blue) critical values, as function of k7.



Extension to my, > 1

We define a new subvector Anderson Rubin test that rejects when

ARp (Bo) > e1-a(smax (Z'=)  k — m).
Note: We condition on the LARGEST eigenvalue of the Wishart matrix.

Theorem: The test above has i) correct size and ii) has uniformly larger
power than the test in GKMC.

Lemma: Under the null Hy : 8 = B, there exists a random matrix O € O(p),
such that for

~

=:==0 ¢ RkXp, and its upper left submatrix 211 e R—mw+1x2



~

=11= =11 is a non-central Wishart 2 x 2 matrix of order k — myy + 1 (cond’l
on O), whose noncentrality matrix, MlMl say, is of rank 1;

Proof of Theorem:

(i) Note that
ARnp (Bo)

K min (E’E> = Fmin (2'Z)

. (== < =/ =
Kmin 11 =11) > Fmax |\ =11-=11

~N y~

kmax (2'Z) = kmax (Z'Z) (1)

IA A

and thus
P(ARn (Bo) > c1—a(fimax (Z'Z) , k — my))
P(timin (£11511) > c1-a(smax (E11211) & — mw))

11=
P(r3 (211211) > e1-alk1 (E11211) . b — mw))

IA

VAN



where first inequality follows from (1) and last inequality from correct size for
myy = 1 (by conditionning on O) and the lemma

Recall summary when my;s = 1: new test rejects when

Ro > c1_o(R1,k—1)

where (R1, Rp) are the eigenvalues of ='= ~ W (k, I, M'M) and M'M is of
rank 1 under the null

(ii) new conditional test is uniformly more powerful than test in GKMC (because
c1—a(-, K — myy)) is increasing and converging to xi_mw 1_o 23S argument
goes to infinity), i.e. the test in GKMC is inadmissible



Power analysis of tests based on (&1, ..., Rp)

o For A=FE[Z'(y — YBg: W)] € RFXP, consider

H):p(A) < myy versus Hy : p(A) =p=my + 1

o Hy: [0 = implies H), but the converse is not true:
0 0 0

— Hj holds iff [p (Myy) < myy or Ny (8 — Bg) € span(My)]

e Under Hj, (A1, ..., Rp) are distributed as eigenvalues of Wishart W (k, I, M' M)
with rank deficient noncentrality matrix - a distribution that appears also
under Hy



e Thus, every test ¢(R1,...,kp) € [0, 1] that has size o under Hy must
also have size a under H6 - so cannot have power exceeding size under
alternatives H))\ Hp.

e |n other words, size o tests (K71, ..., Ap) under Hg can only have nontrivial
power under alternatives p (A) = p.

e We use this insight to derive a power envelope for tests of the form
SO (/%]_, ceey /%p) .



Power bounds

e Consider only the case myy = 1.

e Equivalently, H(’) : ko = 0, K1 > Ko against Hi : ko > 0,k1 > Ko.

e Obtain point-optimal power bounds using approximately least favorable
distribution ALY over nuisance parameter k1 based on algorithm in Elliott,
Miiller, and Watson (2015)
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e Little scope for power improvement over proposed test. But not zero
scope...:

Refinement: For the case k =5, myy = 1, and o = 5%, let ¢, 4; be the test
that uses the critical values in Table above where the smallest 8 critical values
are divided by 5



Asymptotic case: a) almost "conditional homoskedasticity"

e Define parameter space F under the null hypothesis Hpy : 8 = (3.

Let U; = (g4, Vyy;)' and F' distribution of (U;, Vy4, Z;)

F is set of all (v, My, My, F) s.t.
o c RmW’ I—IW c RkaW’ I—IY c RkaY,
EF(||T7;||2+5) < M, for T} € {Zigia ’Uec(ZiVéV,i), VW,i5i7 Eis VW,i? Zi},
Er(Zi(ei Vivi Vi) = 0,
Ep(vec(Z;U;)(vec(Z;U;))) = (Ep(UiU;) ® Ep(Z;7;)),
Fmin(A) > 6 for A € {Ep(Z;2]), Ep(U;U;)}

for some 0 > 0, M < oo

e Note: no restriction is imposed on the variance matrix of vec(Z,L-V{/i)



subvector AR stat equals smallest solution of

RI 4y, — (—

where

Y MY
Note: Same as in finite sample case with Q (3¢) replaced by ~——4

critical value is again

Cl—oz(/%la k — mW)

the 1 — « quantile of (the approximation of) AR, given K1



e Theorem: The new subvector AR test has correct asymptotic size for
parameter space F.

e Again, part of the proof is based on simulations.



Asymptotic case: b) general Kronecker Product Structure

For U; := (g, + Viy., - Vi) p =1+ myy, and m := my + myy let

Frp = {(v, My, Ny, F) : vy € R™W My € RFXMW My € REXY
Ep(||Ti|>*%1) < B, for T; € {vee(Z;U}), vee( Zi Z})},
Ep(Z;V]) = 070" Ep(vec(Z,U})(vec(Z,U}))') = G18Go,
kmin(A) > 02 for A € {Ep (2:2]) ,G1, G2}}

for pd G1 € RP*P (whose upper left element is normalized to 1) and

Gy € RF*F and 61,8, > 0, B < oo

Covers conditional homoskedasticity, but also cases of cond hetero



Example. Take (g;, \N/‘ﬁw)’ € NP i.i.d. zero mean with pd variance matrix,
independent of Z;, and

(€i7 VIﬁV@)/ = f(Z’L)(g’w ‘7{51/7,),

for some scalar valued function f of Z, e.g. f(Z;) = ||Z;||/kY/2. Then

Ep(vec(Z;U;)(vee(Z;U;))')

= Ep (U;U} ® 2,Z))

=L ((57: + Vv, Viva) (gi + Vi, Viva) © Zz’ZQ

=EF ((57; + Vi s Viva) (& + Vi, ‘71%/,1')) ® Ep (f(Zi)zziZz()
has KP structure even though

Er(UiUj|Z;) = £(Z:)°EpEi + iy Vi) Gi + Viv.ors Vivs)

depends on Z;.



e Modified AR subvector statistic. Estimate Ep(U;U; ® Z;Z!) by

AN

n
Rn:=n"1> fifl € REPXEP  \where
1=1

fi = ((Mz(y — YBo))i, (MzgW)s) ® Z; € RFP.

o Let
(G1,G2) = argmin||G1 ® G2 — Rul|F,

where the minimum is taken over (Gq, Go) for G1 € RP*P, Gy € RFXFK
being pd, symmetric matrices, normalized such that the upper left element
of G equals 1. Estimators are unique and given in closed form.

e The subvector AR statistic, ARk p,(80) is defined it as the smallest
root Appn of the roots &;,, ¢ = 1,...,p (ordered nonincreasingly) of the



characteristic polynomial

—1/2

Ry —n 16TV (Yo, W) 2G5 7' (Yo, W) G ‘ = 0.

e Note: Relative to previous definition,

_, —_— R
(G'1 replaces Yn]\{iy and G5 replaces

Z'Z
n

e The conditional subvector ARy p test rejects Hp at nominal size « if

ARKP,n(BO) > c1—alR1n, k — myy),

where c1_,, (,-) is defined as above.



Theorem: The conditional subvector ARy p test implemented at nominal size
« has asymptotic size, i.e.

lim sup sup
=0 (’77”W7I_IY7F)EFKP

equal to a.

P8y q,My Ny, F)(ARAK Pn(Bo) > c1—alR1n, k—mw))



Asymptotic case: c) General forms of Cond Hetero

Perform a Wald type pretest based on CA}l X éz — Ry, to test the null of
Kronecker Product structure

If pretest rejects continue with a robust (to cond hetero and weak V)
subvector procedure, like the AR type tests proposed in Andrews (2017)

Otherwise, continue with the test ARy p test

Resulting test has correct asymptotic size no matter what the pretest nom-

inal size is



e Reasons:

— pretest is consistent against deviations from null for which
1/2 - 7. o 77! 7!
n~“min |Gy ® Ga — Ep(U;U; ® Z;Z;)|| — oo

and the AR type tests in Andrews (2017) have correct asymptotic size

— when
n!/2min ||Gy ® G2 — Ep(U;U} ® Z;Z})|| = O(1)

the conditional subvector ARz p test has correct asymptotic size and
rejects whenever the AR type test in Andrews (2017) rejects.



Asymptotic Size: General theory

e Distinction between pointwise (asymptotic) null rejection probability and
(asymptotic) size

“Discontinuity” in limiting distribution of test statistic

Staiger and Stock (1997): simplified version of linear IV model with one IV

y1 = y20 +u,
Yo = Zm+ v

Let A\, = (A 1n, A2n, A3n) be sequence of parameters s.t. A3, = (Fin, mn)

AMnp = (EZ§)1/27T/O'U and Ay, = corr(u;, v;)



satisfies
hn1(An) = 021, — by < 00 and Ay, 2(An) = Aap — ha.

We will denote such a sequence Ap by A, p.

Work out limiting distribution of 25LS under A, j, :

JU(@ 0) O y’2PZu B (n_lZ’Z)_l/zn_l/zZ’u/au
o 2SLS o y’QPZ?J2 o (n_lZ’Z)_l/zn_l/zZ’yQ/av
(n_lZ’Z)_l/zn_l/zZ’u/au

(n_lZ’Z)1/2n1/27r/av 4+ (n_lZ’Z)_1/2n_1/2Z’v/av
. “u,hy
hl + Zv,ho

< Z’U,,h2 ) ~ N(O,Zh2) and th = ( ]’3- hi2 >
2

Zv,ho

, Where



Similarly for t test statistic T,(6g) :
Tn(60) —d Jp

for h = (h1, ho) under the parameter sequence A, j,.

So, to implement the test, we should take the 1 — a-quantile ¢ (1 — «)
of Jj, as the critical value

If we implement a test using a Wald statistics with chi-square critical
values, the asymptotic size is 1, see Dufour (1997)

Problem: we cannot consistently estimate h; we can only estimate consis-
tently A1,



e (hi1,ho) takes on values in H = (RU {+o0}) x [—1, 1]

e We say the limit distribution of T}, (6g) “depends discontinuously on
nuisance parameter A1{" and continuously on \»

Continuity: when  — xq then f(z) — f(xq)

Here (EZiz)l/zw/av — 0, but limit of T}, (6g) does not just depend on 0

e Situation arises frequently in applied econometrics and leads to size distor-
tion for various "classical" inference procedures:

weak |Vs/identification, use of pretests, moment inequalities, (nuisance)
parameters on boundary, inference in (V)ARs with unit root(s)



General Theory: Asymptotic Size of Tests

{p,, : » > 1} sequence of tests for null hypothesis Hy
A indexes the true null distribution of the observations
Parameter space for A is some space A

RPpn () denotes rejection probability of ¢,, under A

The asymptotic size of ¢,, for the parameter space A is defined as:

AsySz = limsup sup RP,(\)
n—0oo AeA



Formula for Calculation of AsySz
Recall relevance of limits of h,, 1(An) = nl/2)q, = nl/z(EZiz)l/zw/av and
hp2(An) = A2y, = corr(uy, v;) for limit distributions of test statistics in weak
IV example

Generalizing, let

{hn(X) = (hp,1(A), s By s (V) € R :n > 1}
be a sequence of functions on A, where h, j(A\) € RVj =1,...,J.

For any subsequence {pn} of {n} and h € (R U {£o0})’ denote a sequence
{Ap, € N:n > 1} such that hy,,(Ap,) — h by

Apnah‘

Define
H ={h € (RU{£oo})’ : there is subsequence {pn} and sequence Apn.h -



Theorem, Andrews, Cheng, and Guggenberger (2011)

Assume that under any sequence Apn,h

RPpu(Apy,) — RP(R)
for some RP(h) € [0, 1]. Then:

AsySz = sup RP(h).
heH

Proof. i) Let h € H. To show AsySz > RP(h). By definition of H, there is

Ap,,h- Then

AsySz lim sup sup RPp(\)

limsupRPp,,(Ap, 1)
n—oo

RP(h)

'V



Proof. (continued)

ii) To show AsySz < suppecpg RP(h). Let {\n € A: n > 1} be a sequence
such that
limsupRPp(A\n) = AsyS=z.

n—aeo
Let {pn : n > 1} be a subsequence of {n} such that limy—oo RPp,(Ap,)
exists and equals AsySz and hyp,(Ap,) — h. Therefore this sequence is of
type Ap, h, and thus, by assumption, RPp,(Ap,) — RP(h). Because also
RPp, (Ap,) — AsySz, it follows that AsySz = RP(h). U



Specification of \ for subvector Anderson and Rubin test

e Given F' let

Wg = (EpZ;Z))Y? and Up := Q(By) /2.

e Consider a singular value decomposition

CrAp By
of

Wr(Myy, Ny )Up

e i.e. Bp denote a p X p orthogonal matrix of eigenvectors of

Ur(Mywy, Nw ) WeWe(Myy, Ny )Up



and C'r denote a k X k orthogonal matrix of eigenvectors of

WMy, My ) UpUr(Myy, Ny ) Wi

e A denotes a k X p diagonal matrix with singular values (71 p, ..., TpF)
on diagonal, ordered nonincreasingly

e Note 7),p =0



e Define the elements of Ag to be

)\LF = (11F, ---anF)/ € RP,
>‘2,F:: BFERpo,
>‘3,F: = CFERka,
Mg = Wpe RFF
)‘S,F:: UFERpo,
Ao, p i = F,

>‘F . = ()‘1,F7°°'7>‘9,F)°

e Asequence A, j, denotes a sequence Ap, such that (nl/z)\l,Fn, ey A5 F) =
h = (h1,..., hg)

e Let g =qp € {0,...,p — 1} be such that
hij=ocofor1<j<gpand hy;<ooforgp+1<j<p-1



Roughly speaking, need to compute asy null rej probs under seq’s with (i)
strong ident’'n,(ii) semi-strong ident'n, (iii) std weak ident'n (all parameters
weakly ident'd) & (iv) nonstd weak ident'n

strong identification: limy,_ Ty, Fn > 0

semi-strong ident’n: limp 0o Ty, B, = 0 & limp 0o nl/szW,Fn —
00

weak ident’'n: lim,_ n1/2TmW7Fn < 00

— standard (of all parameters): limy—oo n1/27-1,pn < oo as in Staiger
& Stock (1997)
oo includes some weakly /some strongly ident'd parameters, as in Stock
& Wright (2000); also includes joint weak ident’n



Andrews and Guggenberger (2014): Limit distribution of eigenvalues of
quadratic forms

e Consider a singular value decomposition CF/\FB% of WrpDrpUp

e Define Ap, h, Ay, p,... as above

Let Kjp, Vj = 1,...,p denote jth eigenval of

Fa — /\//\ — AN

nU], Dy, W, Wy, DpUnp,



where under A, p,

n'/2(Dy, — Dp,) — 4Dj, € RF*P,
Wn o WFn R pOka,
Up —Up, — p0P*P,

Wg — hg, Ugp, — hs

with hg, hg nonsingular
Theorem (AG, 2014): under {\,, 5, : n > 1},

(a) Kjp —p oo forall j <gq

converges in dist'n to p — q vector of eigenvals of random matrix M (h, D},) €
R(—q)x(p—q)



e complicated proof;
— eigenvalues can diverge at any rate or converge to any number
— can become close to each other or close to 0 as n — oo



e We apply this result with

Wgp = (EFZz'Zé)l/z, Wn=(n"1% Zizé)l/za

v, v\ Y
Up = Q(Bo) /%, Un = ( n—Zk ) ,

DF — (anya I_IW)7 En — (Z/Z)_]'Z/?

to obtain the joint limiting distribution of all eigenvalues



Joint asymptotic dist’n of eigenvalues

e Recall: test statistic and critical value are functions of p = 1 4 myy roots
of

R Y MzY 15—t — Y MzY 1/
Fltemy, — () A PEY)(— 2 )T =0

e To obtain joint limiting distribution of eigenvalues, we use general result
in Andrews and Guggenberger (2014) about joint limiting distribution of
eigenvalues of quadratic forms

Results:

e the joint limit depends only on localization parameters Ay 1, ..., b1 my;,



e asymptotic cases replicate finite sample, normal, fixed IV, known variance
matrix setup

e together with above proposition, correct asymptotic size then follows from
correct finite sample size



