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Abstract:

This paper examines games with non-neutral option labels (such as “A”, “B”, “A”,

“A”) and �nds surprisingly invariant behaviour across games. The behaviour

closely resembles the choices people make when they have to bet on one of

the options in individual lotteries. An option’s ‘representativeness’ (lack of

distinguishing features) and ‘reachability’ (physical centrality, salience, and va-

lence) determine choice behaviour in both the lotteries and the highly strategic

games. There is no evidence of people best-responding to others’ betting(-like)

behaviour. This is in line with the idea that once people decide that strategic

reasoning would not take them any further, they pick an alternative as if they

were betting on one of their ‘current best-responses’. The �ndings explain the

well-documented seeker advantage in hide-and-seek games, as well as why par-

ticipants often display behaviour that could be exploited by others. On top, they

help understand why in national lotteries, people also tend to bet on identical

subsets of the available numbers.
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1 Introduction

When people play the lottery, they tend to make similar choices. Over the last

three decades, researchers have identi�ed a number of characteristics of the num-

bers lottery players choose. For example, players tend to choose “situationally

available” numbers and numbers in the centre of the lottery ticket, as well as

combinations “with an eye for aesthetics” (Wang et al., 2016).
1

Just to point to

two extreme examples, on 18
th

June, 1977, 205 people had to share the jackpot of

the German lottery—all betting on the (“situationally available”) winning num-

bers of the Dutch lottery of the week before. Similarly, on 4
th

October, 1997, 124

people had to share the jackpot, all betting on the same (“aesthetic”) U-pattern

on their lottery tickets.
2

However, a question that the literature does not seem to

address is: Why do people choose these numbers given that others are choosing
them, too? One potential reason could be that people ignore the fact that they

are in a strategic situation: That maximising expected payo�s means selecting

not only the right numbers but also numbers that few others choose.

This paper is about situations that are evidently strategic. While game theory

describes how perfectly rational players would interact in any strategic situation,

its predictive power for actual behaviour should be higher in situations whose

strategic nature cannot be ignored. However, it is clear by now that people’s

actual strategic reasoning di�ers from the game-theoretic ideal (e.g., Crawford

et al., 2013). What remains unclear is what strategic reasoning people do use in

important games like pure discoordination games, hide-and-seek, or rock-paper-

scissors.

This paper argues that these games (and others) share important features

with ‘lottery games’ like the above, in which players get to choose their numbers

and winnings are divided when there are several winners. The evidently strategic

situations have a unique symmetric mixed-strategy Nash equilibrium in which

players mix uniformly amongst all options. Hence, in equilibrium—much like in

the lottery-game context—all options a�ord the same prospects.
3

Moreover, sim-

ilarly to the national-lottery data and in contrast to the equilibrium prediction,

scholars have documented a bunching of choices (e.g., Rubinstein et al., 1997).
4

1
For other recent contributions on how people make lottery-ticket choices, see also, e.g., Kong

et al. (forthc.), Krawczyk and Rachubik (2019), or Suetens et al. (2016).

2
Source: https://www.lottoland.com, last accessed on 11

th
March, 2019.

3
Note that the equivalence of the options does not hinge on the particular choice of the

strategic-reasoning model. Uniform randomisation is also the quantal-response equilibrium

(McKelvey and Palfrey, 1995) given that strategies are not distinguishable by their payo�s. Also,

level-k (Nagel, 1995; Stahl and Wilson, 1994) or cognitive-hierarchy models (Camerer et al., 2004)

yield the same solution if they rely on a uniformly-mixing level-0.

4
There is a single model in the literature that accounts for some of Rubinstein et al.’s data.

Crawford and Iriberri (2007) show that a level-k variant based on salience as level-0 can account
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This paper shows that the bunching of choices follows the same principles

as individual-lottery betting and is common even amongst hiders in a hide-and-

seek game. However, for hiders choosing the same option as many others—and

in particular, the same option as many seekers—is a particularly bad choice. So,

what remains to be answered is: Why does behaviour deviate so much from the

game-theoretic ideal also in the evidently strategic games, why is it so close to

betting behaviour in individual lotteries even when actions are strategic substi-

tutes, and why do so many people leave money on the table by not exploiting

others’ betting-like behaviour?

Answering these questions is important because it is informative for how

people make strategic decisions in their private as well as their professional lifes.

This paper focuses on situations that have three characteristics. (i) The situations

are one-( or �rst-)time occasions, so that players cannot condition on any his-

tory. (ii) The players’ options have non-neutral ‘labels’, where the term ‘label’

represents any non-payo� relevant attributes. And (iii) the options are otherwise

indistinguishable (which makes the situation a “strategy-isomorphic game”, cf.
Hargreaves Heap et al., 2014).

5

While it may be unclear whether strategy-isomorphism is a widespread fea-

ture in everyday life, it is a feature that is common for many examples in the

game-theoretic literature from coordination to hide-and-seek games—and lottery

games. With respect to labels, it is clear that in real-life situations, alternatives

are hardly ever abstract objects. Instead, alternatives usually have non-neutral

labels attached to them, and they often have a spatial ordering. When driving

from one city to another, we may choose between the “northern” and the “south-

ern route”, but we rarely choose between “option i and option j, where i 6= j”.
It has long been known that such non-neutral frames often have an in�uence

on choices in an individual-choice context, and this has been incorporated into

a choice-theoretic framework (i.a., by Salant and Rubinstein, 2008).
6

for hide-and-seek data from a number of frames. However, Hargreaves Heap et al. (2014) argue

that if Crawford and Iriberri (2007) had used also the data from Rubinstein et al.’s coordination

and discoordination games, the model’s explanatory power would have been small. On the other

hand, Penczynski (2016) �nds evidence of level-k-like thinking in hide-and-seek games played on

the central frame from Crawford and Iriberri (2007), abaa. At the same time, Wol� (2016) focuses

on the same frame and elicits salience in nine di�erent ways. The elicited salience patterns all

tend to be similar, but they do not allow to account for the data when used as level-0.

5
See Alós-Ferrer and Kuzmics (2013) for a treatment of the frame-induced symmetry structure

and its consequences for predicted behaviour in such games. Earlier studies on behaviour in this

type of environment include Rubinstein et al. (1997, coordination games, discoordination games,

and hide-and-seek games), or Mehta et al. (1994) and Bardsley et al. (2010, who restrict their focus

to coordination games with options carrying naturally occurring labels, as studied by Schelling,

1960). See also Scharlemann et al. (2001) for trust games where participants’ interaction partners

were “labeled” by photographs.

6
Recently, Piccione and Spiegler (2012), Spiegler (2014), and Salant and Siegel (2018) intro-

3



Finally, many economically important situations are one-time situations or

have a �rst period without precedents (in which case �rst-period behaviour may

be particularly important as in case of multiple equilibria, it may determine the

equilibrium that will be played in the long run). As an example, think of com-

peting �rms designing a new product who have to adapt one of two distinct but

equivalent standards.

While a huge number of experimental studies have combined strategy-isomorphism

with one-shot interactions, this paper is one of relatively few that addresses the

in�uence of non-neutral labels as a ubiquitous aspect of reality in strategic situa-

tions. To do so, I combine the relatively rich data set from Rubinstein and Tversky

(1993) and Rubinstein et al. (1997) with data I gathered for other projects as well

as some new data, to arrive at a �nal data set that includes data from over 2’000

participants.

The answer that this paper o�ers is what I call the ‘lottery player’s fallacy’.

Once people’s (strategic) deliberations bring about the conclusion that there is no

reason to favour any of the available options, they enter a ‘lottery-player mode’.

In the ‘lottery-player mode’, people simply bet on one of the actions, no longer

paying attention to the fact that others may act in a similar way. This implies

that such games will yield the same choice pattern as individual lotteries over

the same option sets.

Falling prey to the ‘lottery player’s fallacy’ changes the set of best-responses

for others and could be exploited by them. Surprisingly, however, I do not �nd

any evidence for participants playing a best-response to others’ betting-like be-

haviour. As this paper shows, a simplistic model incorporating the ‘lottery player’s

fallacy’ performs better in out-of-sample predictions (where over-�tting is not an

issue; it also is undominated in data �tting) than a whole number of variants that

allow for optimal reactions to ‘lottery-player-mode choices’.

The ‘lottery player’s fallacy’ provides an explanation also for why coordination-

game choices are di�erent from choices in other games. In the coordination

games I study, players’ strategic deliberations—which may, for example, be based

on team-reasoning—will not yield the conclusion that there is no reason to favour

any of the options: Choosing salient items yields a higher probability of coordi-

nating. Hence, players will not enter the ‘lottery-player mode’ in coordination

games. And hence, their coordination-game behaviour will di�er from behaviour

in lotteries as well as the other games, in which people will enter the ‘lottery-

player mode’.

As a precondition for the o�ered explanation of the data, this paper estab-

duced models incorporating framing also into interactive situations: in these studies, sellers can

choose which frame to communicate to their buyers to in�uence the latters’ buying decisions. In

the present study, in contrast, players interact under exogenously given sets of labels.

4



lishes that when people play di�erent games on the same frame, the actual game

being played has a surprisingly minor role (where a “frame” refers to the label-

ing and spatial ordering of the available alternatives). Unless people are playing

a coordination game, behaviour always is well-correlated with behaviour in a

lottery played on the same frame. This invariance is all the more remarkable

given that the participants come from di�erent cultural backgrounds (Israel, US,

Germany) and di�erent generations (students in the 1990s vs in the 2010s).

Behaviour in lotteries can be modelled well by the available options’ “repre-

sentativeness” and their “reachability”. In this context, representativeness means

that the item does not have “prominent, ‘non-random’ properties” (Bar-Hillel,

2015, citing Teigen, 1983). Reachability includes salience (which makes an op-

tion cognitively reachable), valence (which may make an option more attractive

to reach out for), and physical proximity (which in our context means centrality:

If options are presented on a horizontal line, then the options right in front of

the person—the options in the middle—would be easier to reach with one’s hands

than the options at the extremes).

In Section 4.3, I regress how often an option is chosen in the lottery setting

(the option’s ‘betting attraction’) on empirical measures of “representativeness”

and on di�erent aspects of “reachability”. As predicted by the ‘lottery player’s

fallacy’, this regression is indicative of choices in the games, too. In fact, using �t-

ted ‘betting attraction’ allows to predict strategy choices in games out-of-sample

(and partially even ‘out-of-subject-pool’) virtually as well as measured ‘betting

attraction’.

2 The data

I use data of several papers on behaviour in games where actions are not dis-

tinguishable by their payo�s, complemented by new data from the “to-your-

right game” I describe below. All of the games are two-player four-option games

played on di�erent frames. The left-hand column of Table 1 provides an overview

of the frames. I use all frames presented by Rubinstein and Tversky (1993) and

Rubinstein et al. (1997), plus two obvious complements, baaa and aaab, as well

as the Ace-2-3-Joker frame introduced by O’Neill (1987) and also referred to in

Crawford and Iriberri (2007, frames are represented as follows: E.g., baaa repre-

sents a frame in which the left-most option—or “box”—is labelled b and all other

options are labelled a).
7

7
It can be argued that including all of Rubinstein et al.’s frames distorts the analysis because

some of these frames use labels with positive or negative connotations. Therefore, choosing the

associated actions may increase or decrease utility on top of the utility associated with the result-

ing monetary outcome. I nevertheless include all of Rubinstein et al.’s frames, for three reasons:

5



Frame Coordination Discoordination Hiders Seekers To-your-right

RTH RTH RTH RTH new

(50) (49) (53) (62) (110)

polite-rude-honest- RTH RTH RTH RTH new

-friendly (50) (49) (53) (62) (110)

RTH RTH RTH RTH new

(50) (49) (53) (62) (110)

abaa RTH+W RTH+WB RTH+HW RTH+HW new

(122) +BW (442) +W (339) +W (281) (110)

RTH RTH RTH RTH new

(50) (49) (53) (62) (110)

hate-detest-love-dislike RTH RTH RTH RTH new

(50) (49) (53) (62) (110)

1-2-3-4 RT WB+BW RT RT new

(184)
†

(292) (187) (84) (110)

aaba RT WB+BW RT RT new

(185)
†

(292) (189) (85) (110)

Ace-2-3-Joker WB+BW new

(292) (110)

baaa WB+BW new

(292) (110)

aaab WB+BW new

(292) (110)

†
Pooled from the “Chooser” and “Guesser” framings. RTH: Rubinstein et al. (1997). RT: Rubinstein and Tversky (1993).

HW: Heinrich and Wol� (2012). BW: Bauer and Wol� (2018). WB: Wol� and Bauer (2018). W: Wol� (2015).

Table 1: Origin of the data I use (numbers of observations in parentheses).

Table 1 presents the origin of the data I use in this study, together with the

number of observations in parentheses. I added data from a new game (“to-your-

right”) to the data I had gathered from existing sources (coordination, discoor-

dination, and hide-and-seek games). I added this data in order to test predictive

success, to make sure the o�ered explanation has bite not only on pre-existing

data but also on a new data set.
8

The data for the coordination and hide-and-seek games mostly comes from

Rubinstein and Tversky’s (1993) and Rubinstein et al.’s (1997) studies, only for the

abaa frame, I have additional observations from other studies for each game. For

the discoordination games, Rubinstein et al. (1997) only have data for six of the

frames. I complement this with data on a di�erent subset of six frames collected

(i) In my view, understanding behaviour in non-neutral landscapes extends beyond ‘neutral non-

neutral’ landscapes (and it would be di�cult to draw the line if we accept the idea that people

tend to have lucky numbers); (ii) at least some of the behavioural models described in this paper

are meant to apply also under ‘truly non-neutral’ frames; and (iii) excluding frames with clearly

positive or negative connotations in our sample does not change the results meaningfully but

leaves us with less statistical power for the analysis.

8
The payo� matrices of all games are given in Appendix B.
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for two studies run by Dominik Bauer and myself. Finally, I collected the data

for the to-your-right games speci�cally for this study. A complete tabulation of

all the data can be found in Appendix A. Given the data structure, the setup

corresponds to a between-participants design in terms of the player roles/games

(the same applies to virtually all additional empirical measures described below).

The only within-participants variation is in terms of the frames: many players

in the sample played the same game in the same role on di�erent frames.

I ran the to-your-right game as the �rst part of sessions comprised of three

parts, where I described each part only as it started. Only one part was paid. If

the �rst part was payo� relevant, the roll of a die selected one of the to-your-

right games for payment. Participants played under all eleven frames with a

randomised order, random rematching, and without feedback between games. I

described the to-your-right game as follows:

There are four boxes. You and the other participant choose a box

without knowing the decision of the respective other. One of you

can obtain a prize of 12 Euros. Who wins depends on the relative

position of the two chosen boxes. The participant wins whose box

lies to the immediate right of the box of the other participant. If a

participant chooses the right-most box, then the other participant

wins if he chooses the left-most box. Who does not win obtains a

consolation prize of 4 Euros. Of course, it is possible that neither

you nor the other participant wins.

Participants had not participated in any other experiments using the same

type of non-neutral frames.
9

I initially set out to describe behaviour using level-k-models based on em-

pirical measures of certain psychologic concepts. For this purpose, I collected

data from additional tasks in separate sessions. First, I conducted seven sessions

with a total of 140 participants that had a BettingTask as the �rst of several

parts (following the same procedures as with the to-your-right games). In the

BettingTask, participants faced the following task:

In each decision situation you have to choose one out of several

boxes. Subsequently, one of the boxes will be randomly selected by

the cast of a die. In case the randomly-selected box coincides with

the box you chose, you receive 12 Euros. If the two boxes do not

coincide, you receive 4 Euros.

Next, I conducted three sessions with a total of 58 participants of a HiderBet-

tingTask. This task di�ers from the BettingTask only in that participants

9
I used z-Tree (Fischbacher, 2007) and orsee (Greiner, 2015).
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Game/Role Coordination Discoordination Hiders Seekers To-your-right

Modes that coincide
†

(in %) 31.3 50 93.8 93.8 68.2

Spearman correlation of ranks 0.23 0.24 0.63 0.61 0.5

p-value of Spearman test (0.205) (0.110) (< 0.001) (< 0.001) (0.001)

Table 2: Relationship of BettingTask data and data from the di�erent player

roles. Note:
†
For the aaba-Frame, the BettingTask data have a split mode on the central a and on b. To account for

this, I counted the coincidence with the game data only as 0.5 for this frame.

receive the bigger prize if their choice does not coincide with the randomly-

selected box. Finally, I asked 96 participants to rate the options’ optic salience

(SalienceRating) and 102 participants to rate how well each of the boxes within

a frame represented all four boxes within that frame (RepresentRating).
10

In

both tasks, participants saw the boxes in the same horizontal line-up as in the

other tasks. Below each box, they had a slider (empty at the outset) to indicate the

level of optical salience (between “extremely conspicuous”, top, and “extremely

nondescript”, bottom) or representativeness (between “totally representative”,

top, and “not representative at all”, bottom).

Observation 1. Choices in the BettingTask and game data are correlated.

The �rst row of Table 2 shows that the modal choice in the BettingTask data

coincides with far more than the expected 25% under random play for the disco-

ordination game (50%), hiders and seekers (both 94%), to-your-right game (68%)

but not so much for the coordination game (31%). To assess the correlation in

more detail, I look at the choice patterns, assigning a rank of 1 if a certain option

in a speci�c game under a speci�c frame was chosen most often, a rank of 2 if

that option was chosen second-most often, and so on. This analysis then shows

a high Spearman correlation if the game data exhibits a very similar pattern as

the BettingTask data under the same frame. The resulting rank correlations

are all substantial (0.23 ≤ ρ ≤ 0.63); at the same time, the correlation with the

coordination-game data seems the least robust correlation with a p-value of 0.2.
11

10
The rating tasks were included in BettingTask and HiderBettingTask sessions similar to

a post-experimental questionnaire.

11
This analysis neglects the limited degrees of freedom of the data: once ranks 1-3 are assigned,

the remaining option has to have rank 4. If I use the mean squared rank di�erence between game

data and BettingTask data for each frame, sum the result over all frames, and use that as a test

statistic against the expected statistic if ranks were randomly assigned, I obtain even lower p-

values: 0.103 for coordinators, 0.064 for discoordinators, and p < 0.001 for the remaining roles.

8



3 Amending standard models to account for the

data

Interpreting the evidence from Observation 1, it looks like participants have

found a way of playing the coordination game that is not so much driven by

the principles that drive their BettingTask choices. At the same time, it looks

as if they were relying on those principles in the other games to a large degree.

In light of these observations, I put forward the following two-step explanation:

In Step 1, players start reasoning strategically in some way that allows them to

‘solve’ the coordination game, presumably by choosing the most salient option.

However, this strategic reasoning does not allow them to single out a unique

best-response to what they think their opponent will do in the other games.

Given that after step 1, there are multiple options that seem to yield the same

expected payo�—presumably, all four options—in step 2, players would choose

amongst these options as amongst “evidently equivalent options” (Bar-Hillel,

2015). As Bar-Hillel argues in her article, choice amongst evidently equivalent

options may be understood best in terms of the options’ representativeness and

their “reachability” (which in our case may be determined by salience, physical

centrality, and potentially valence).

At this point, we might argue that once players have reached the end of

step 2, they could go on in their strategic reasoning, in a level-k-like fashion:

Best-responding to others’ choice between evidently equivalent options, best-

responding to the best-response, or going even further. The following section

explores this possibility in detail, juxtaposing several more strategically sophis-

ticated models to the idea that there simply are two types of players: Uniformly

mixing (equilibrium) players and players who choose amongst the evidently equiv-

alent (equilibrium) options by choosing ‘BettingNumbers’. Before I present the

results, let me brie�y describe the models I explore.

As I argued in the introduction, there are no ‘standard’ alternatives available

that would come close to explaining the data. Starting from the observation that

the BettingTask choices are surprisingly similar to the data from the di�erent

games, I construct three ‘conceptually sensible’ level-k alternatives based on the

BettingTask choices. These level-k alternatives essentially add the possibility

that some players best-respond to betting-like behaviour, or to the best-response

to betting-like behaviour, or even to higher iterations of best-responding.

In analogy to one of the level-k models, I additionally construct an equilib-

rium with payo�-perturbations that also builds on the notion that BettingTask

choices are indicative of non-monetary utility that di�erent option labels and

positions may convey. As benchmarks, I include the standard Nash equilibrium,

a standard level-k model with uniformly mixing level-0, and the salience-based

9



level-k of Crawford and Iriberri (2007) with an empirically-de�ned level-0.

NashEqm. The unique symmetric mixed-strategy equilibrium has both play-

ers randomise uniformly over all locations. Hence, the likelihood function is:

L = Πi⊂{H,S,C,D,T}Πf=1,...,Fi
Πj=1,2,3,4

(1

4

)X(i)
fj

,

whereH,S,C,D, and T stand for hiders, seekers, coordinators, discoordinators,

and to-your-right players, respectively, f is the frame, j is the location within

frame f , and X
(i)
fj is the number of players choosing j in role i under frame f .

LuckyNoEqm. A Nash-equilibrium variant in which participants derive ex-

tra utility from choosing certain locations (cf. Crawford and Iriberri, 2007). For

this model, I interpret the BettingTask data as a measure of participants’ in-

herent preferences for the di�erent locations.
12

I compute utility values from

the BettingTask data and re-de�ne the game in terms of these utility values: A

multinomial-logit utility model estimated by maximum likelihood yields utility

values that I transform in an a�ne-linear way (to obtain positive utility values).

Concretely, relating the latent utility of betting on location j in frame f to the

probability of choosing it in the betting task by a logit-choice function yields

Pr(j, f) =
eλUb(f,j)∑

l=1,2,3,4 e
λUb(f,l)

, (1)

where Ub(f, j) is the latent utility value of betting on location j in frame f . The

corresponding likelihood function is

L = Πf=1,...,Fb
Πj=1,2,3,4

eλUb(f,j)X
(b)
fj

(
∑

l=1,2,3,4 e
λUb(f,l))X

(b)
fj

,

where X
(b)
fj is the number of participants choosing location j in frame f of the

betting task. A maximum-likelihood estimation yields estimates for λUb(f, j)
that sometimes happen to be negative. However, I can transform the estimates

for Ub(f, j) into U ′b(f, j) = aUb(f, j) + b so that all U ′b(f, j) are positive.

The predicted choices for the betting task remain the same as in equation

(1).
13

However, the transformation does a�ect the mixed-strategy equilibria for

12
Of course, this assumes that people are homogeneous in what utilities they derive from the

di�erent locations. This is a strong assumption, but it is the best approximation that I have.

13
To see that the predicted choices remain the same, note that λUb(f, j) = λ′U ′b(f, j)− λb

a for

λ′ = λ
a . Factoring out e−λb/a in both the numerator and the denominator yields the equivalence.

10



the games that result when the non-zero entries in the standard game matrix are

replaced by the transformed utility values. Assuming that participants will play

the mixed equilibrium strategy with probability (1 − ε) and choose a random

action with probability ε—not all equilibrium strategies have full support—leads

to the following likelihood function:

L = Πi⊂{H,S,C,D,T}Πf=1,...,Fi
Πj=1,2,3,4

(
(1− ε)π∗ifj(a, b) +

ε

4

)X(i)
fj

, (2)

where π∗ifj(a, b) is the equilibrium probability of choosing location j under frame

f in game i for the betting-utility transformation given by a and b. The log of (2)

is maximised over ε, a, and b.
Take the example of a discoordination game played on abaa: (Absolute)

choice frequencies in the BettingTask were 18, 46, 58, and 18. If these frequen-

cies are the result of a multinomial-logit choice process, the maximum-likelihood

estimates for utilities are -0.53, 0.41, 0.64, and -0.53. Using, for example, a = 2
3

and b = 1 those utilities are recalibrated to 0.64, 1.27, 1.43, and 0.64 (which are

still in accordance with the BettingTask choice frequencies). We can then use

the recalibrated values as the corresponding entries in the normal form game:

When a participant chooses one of the end-as and her opponent chooses an-

other location, the participant’s utility will be 0.64. Likewise, when she suc-

cessfully discoordinates by choosing b, her utility will be 1.27. Using the re-

sulting normal-form game, the unique symmetric-equilibrium (mixed) strategy

would be (0, 0.47, 0.53, 0). As I point out above, I allow for errors and allow the

maximum-likelihood procedure to optimise over the utility-recalibration for the

model comparison in part 4.1.

Standard Lk. The standard level-k model with a uniformly mixing level-0,

together with the standard auxiliary assumption that the choices of each higher

level also leads to a uniform distribution in the aggregate. The predictions of the

model (and thus, also the likelihood function) coincide with those of the standard

Nash equilibrium for the games examined here. Therefore, the model will be

subsumed under “NashEqm” for the remainder of the paper.

Salience-Lk. Crawford and Iriberri’s (2007) level-k model in which level-0
follows salience, and level-k players with k > 0 play a best-response to level-

(k − 1) players. Rather than making assumptions about what is salient, I use

data from the SalienceRating task as the level-0 to base the model on.
14

The

14
I use the distribution of locations that participants ranked as most salient, to obtain a metric

that is comparable to the data from the BettingTask. Using the average salience rating for each

location does not change the results in any signi�cant way.
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corresponding likelihood function is the following:

L = Πi⊂{H,S,C,D,T}Πf=1,...,Fi
Πj=1,2,3,4

[
r

Xsal

fj∑
mX

sal

fm

+sρsal,1ifj +tρsal,2ifj +uρsal,3ifj +vρsal,4ifj

]X(i)
fj

,

where Xsal

fj is the number of SalienceRating respondents for whom location j

was the most salient location under frame j, and ρsal,kifj is the probability that a

player of level k chooses location j under frame f in player role i.
For our discoordination-game example on abaa, the �rst a is held to be the

most salient location by 2% of all SalienceRating participants, b by 91%, and the

central and last as by 4% each. Therefore, we would expect level-0 to choose with

probabilities (0.02, 0.91, 0.04, 0.04), uneven levels to choose the �rst a, and even

levels to randomise between the other three locations (ρsal,1ifj and ρsal,3ifj coincide

for the discoordination game, as do ρsal,2ifj and ρsal,4ifj ).

Betting-Lk. This level-k model uses as level-0 the data from the Betting-

Task. In level-k theories, level-0 is supposed to be people’s intuitive reaction to

the game, which may well coincide with the choice they make in a lottery. The

likelihood function is given by:

L = Πi⊂{H,S,C,D,T}Πf=1,...,Fi
Πj=1,2,3,4

[
r

Xbet

fj∑
mX

bet

fm

+sρbet,1ifj +tρbet,2ifj +uρbet,3ifj +vρbet,4ifj

]X(i)
fj

,

where Xbet

fj is the number of respondents choosing location j in frame j of the

BettingTask.

In the abaa-discoordination-game example, betting proportions—and hence,

level-0 choices—are 13%, 33%, 41%, and 13%. Then, uneven levels randomise be-

tween the end as and even levels between the two locations in the middle.

asymmBetting-Lk. This parallels Crawford and Iriberri’ 2007 level-k model

with an asymmetric level-0 that follows ‘betting attraction’ for coordinators and

seekers. For discoordinators, hiders, and to-your-right players, it instead follows

an inverted version of the betting proportions (‘avoids betting attraction’), lead-
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ing to the following likelihood function:
15

L = Πi⊂{S,C}Πf=1,...,Fi
Πj=1,2,3,4

[
r

Xbet

fj∑
mXbet

fm
+ sρbet,1ifj + tρbet,2ifj + uρbet,3ifj + vρbet,4ifj

]X(i)
fj

+

+ Πi⊂{H,D,T}Πf=1,...,Fi
Πj=1,2,3,4

[
rxnBet,0fj + sρnBet,1ifj + tρnBet,2ifj + uρnBet,3ifj + vρnBet,4ifj

]X(i)
fj

,

where xnBet,0fj = (1 − Xbet

fj∑
mXbet

fm
)/3 and ρnBet,2ifj are the probabilities that follow

from using xnBet,0fj as level-0. In the abaa-discoordination-game example, level-0

choices therefore equal 29%, 22%, 20%, and 29%. Then, uneven levels choose the

central a and even levels randomise between the other three locations.

Bounded Lk. This model di�ers from standard level-k with a uniformly ran-

domising level-0 only in terms of level-1. It incorporates that level-1 players

may respond to uniform randomisation by non-uniform randomisation (or by

not randomising at all): The BettingTask and HiderBettingTask elicit what

participants do when facing uniform randomisation. Level-1 seekers will act like

participants in the BettingTask, whereas level-1 discoordinators and level-1
hiders will act like participants in the HiderBettingTask. For the to-your-right

games, I also use the HiderBettingTask given that participants have to disco-

ordinate with a random choice also in this game, even if in a very speci�c way.

The resulting likelihood function is:

L = Πi⊂{S,C}Πf=1,...,Fi
Πj=1,2,3,4

[
r
4

+ s
Xbet

fj∑
mXbet

fm
+ tρbd,2ifj + uρbd,3ifj + vρbd,4ifj

]X(i)
fj

+

+ Πi⊂{H,D,T}Πf=1,...,Fi
Πj=1,2,3,4

[
r
4

+ s
XhBet

fj∑
mXhBet

fm
+ tρbd,2ifj + uρbd,3ifj + vρbd,4ifj

]X(i)
fj

,

where XhBet

fj is the number of participants choosing location j in frame j of the

HiderBettingTask.

For abaa, the HiderBettingTask choice frequencies are 9%, 53%, 21%, and

17%. Therefore, in our discoordination-game example, level-0 would randomise

uniformly, level-1 would choose with probabilities (0.09, 0.53, 0.21, 0.17), even

levels would choose the �rst a, and uneven levels of level-3 or higher would

randomise uniformly among all locations but the �rst a.

15
Grouping the to-your-right players with discoordinators and hiders rests on the idea that to-

your-right is a speci�c type of discoordination game as well. If I was to group the to-your-right

players with coordinators and seekers instead, the model would be much worse at �tting the

to-your-right data, and gain ever so slightly in terms of the out-of-game predictions in Section

4.2 (with a mean squared prediction error of 0.0097 instead of 0.0100).
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model �tted on LogL MSE parameters
†

Standard Lk coordination -1027 0.0782 —

(asymm)Betting-Lk -951 0.0616 2 (r, s+ t+ u+ v)
Bounded Lk -945 0.0635 3 (ε, s, t+ u+ v)
Salience-Lk -885 0.0154 2 (r, s+ t+ u+ v)

Betting-Lk discoordination -2980 0.0056 3 (r, s+ u, t+ v)
NashEqm/Standard Lk -2975 0.0045 —

asymmBetting-Lk -2974 0.0052 5 (r, s, t, u, v)
Salience-Lk -2972 0.0039 3 (r, s+ u, t+ v)
Bounded Lk -2967 0.0034 3 (ε, s+ u, t+ v)
LuckyNoEqm -2960 0.0038 3 (a, b, ε)
BettingNumbers + Uniform -2959 0.0039 1 (ε)

NashEqm/Standard Lk hide & seek -2412 0.0160 —

Salience-Lk -2404 0.0126 5 (r, s, t, u, v)
LuckyNoEqm -2361 0.0116 3 (a, b, ε)
Bounded Lk -2340 0.0089 5 (ε, s, t, u, v)
BettingNumbers + Uniform -2316 0.0076 1 (ε)
asymmBetting-Lk -2300 0.0064 5 (r, s, t, u, v)
Betting-Lk -2297 0.0066 5 (r, s, t, u, v)

NashEqm/Standard Lk to-your-right -1677 0.0034 —

Bounded Lk -1676 0.0033 5 (ε, s, t, u, v)
BettingNumbers + Uniform -1674 0.0030 1 (ε)
Betting-Lk -1672 0.0028 5 (r, s, t, u, v)
Salience-Lk -1672 0.0028 5 (r, s, t, u, v)
LuckyNoEqm -1669 0.0039 3 (a, b, ε)
asymmBetting-Lk -1665 0.0021 5 (r, s, t, u, v)
†
In Level-k models, r-v represent the proportions of levels 0-4; a and b are the parameters used

for the a�ne-linear transformation of utilities in the equilibrium with payo� perturbation; and

ε stands for any mixture with uniform randomisation (due to errors or otherwise).

Table 3: Performance of the models in terms of data �tting, ordered by log-

likelihood.

4 Results

4.1 Accounting for behaviour

The coordination-game data is explained best by participants choosing what they

see as the most salient option, as evidenced by the success of the Salience-Lk
model in the top part of Table 3 (Salience-Lk has the largest log-likelihood and

the lowest mean squared error; I omit the Nash-equilibrium model here as it does

not make a unique prediction). For virtually all frames we use, this would be in

line with team reasoning (following the decision rule that, when followed by

14



all players, yields the best outcome) as much as with the Salience-Lk model.
16

Hence, the data would be consistent also with the two-step reasoning I propose

in this paper if we assume that players use team reasoning as step 1.

The focus of this paper, however, will be on the second step of the proposed

reasoning and on the question of whether including a best-response assumption

to the introduction of ‘choice as in a BettingTask’ will allow to account for the

data better. For the set of label sets used in this paper, Section 4.3 shows that

BettingTask choices are determined by ‘representativeness’ (the lack of distin-

guishing features) and ‘reachability’ (physical centrality, salience, and valence),

in line with the psychology literature.

Result 1. Adding ‘BettingNumbers’ to a model generally improves that model’s

ability to �t the data. However, there is no clear evidence that additionally al-

lowing for best-responses to ‘BettingNumber’-choosing players would yield

any further improvement.

Looking at Table 3, the amended models (Betting-Lk, Bounded Lk, and

LuckyNoEqm) generally outperform their corresponding standard model (Standard

Lk andNashEqm) both in terms of exhibiting a larger log-likelihood and a smaller

mean squared error (MSE). The single exceptions is that in the discoordination

game, the (asymm)Betting-Lk models perform worse than Standard Lk.

Looking at the discoordination game (second part of Table 3), the BettingNum-

bers + Uniform mix exhibits the largest log-likelihood of the models. It is out-

performed in terms of the mean squared error (MSE) by Salience-Lk, Bounded

Lk, and LuckyNoEqm. However, each of these models performs clearly worse

than BettingNumbers + Uniform when �tted on hide-and-seek data, as the

third part of Table 3 shows. Here, (asymm)Betting-Lk—which BettingNum-

bers + Uniform outperformed clearly in �tting the discoordination data—take

on the role of the main contender, with higher log-likelihood and lower MSE.
17

In the to-your-right games, �nally, the asymmBetting-Lk performs best (yield-

ing a distribution of reasoning levels that is almost close to uniform, with 21%,

29%, 29%, and 22% of levels 1 through 4, respectively). The other models tend to

be very close to each other in terms of their ability to �t the data. The Lucky-

NoEqm model performs second best in terms of the log-likelihood (but worst in

16
For a formal treatment of team reasoning, I refer the interested reader to Sugden (1995).

Roughly, team reasoning requires a choice between decision rules. In the model of Sugden

(1995), these decision rules are constructed in a hypothetical state before the labels are assigned to

strategies. Decision rules could be “choose the smallest number”, “choose your favourite colour”,

“choose the item standing out the most”, or “choose the most representative item”. The predicted

decision rule should then be unique in being collectively optimal.

17
Note, however, that the �tted asymmBetting-Lk shows a completely implausible W-pattern

in the estimated level-distribution, with 34%, 6%, 28%, 6%, and 25% for levels 0 through 4.
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terms of the MSE), while BettingNumber + Uniform performs slightly worse

than Betting-Lk and Salience-Lk.

So, while BettingNumbers + Uniform does not dominate any of the other

models, it beats each model on at least one data set. It �ts the discoordination

game best, it �ts the hide-and-seek data third best, and in the to-your-right game,

it �ts the data almost as well as Betting-Lk and Salience-Lk (the comparison

to the LuckyNoEqm model is ambiguous because of that model’s large MSE).
18

On top, BettingNumbers + Uniform has only one free parameter as op-

posed to three (LuckyNoEqm + the amended level-k models for the discoordina-

tion data) or �ve (the amended level-k models for the hide-and-seek and to-your-

right data). As further suggestive evidence, the �tted Bounded Lk has virtually

only levels 0 (uniform randomisation) and 1 (BettingTask/HiderBettingTask),

no matter which game the model is �tted on (a combined 100% if �tted on disco-

ordination, 88% if �tted on hide-and-seek, 94% if �tted on to-your-right). When

models have multiple free parameters, a good �t to the data may be due to two

di�erent reasons: high explanatory power or over-�tting. To tell apart high ex-

planatory power and over-�tting, I look at out-of-sample predictions in the next

section.

4.2 Predicting out of sample

Table 4 displays the weighted mean squared prediction errors for the di�erent

models for a leave-one-out procedure. Under this procedure, I �t each model to

all games but one and calculate the mean squared prediction error for the left-out

game. I predict all games’ behaviour in this way, and then weight the resulting

mean squared prediction errors by the number of frames for which I have the

data. I leave out the coordination games, as for some models the prediction is

unclear, and as my focus lies on the games that are not coordination games.

Result 2. Adding best-responding types to a mix of BettingNumbers and uni-

form mixing worsens the model’s predictive power.

Table 4 shows that BettingNumbers +Uniform predicts out of sample best.
19

In contrast, Bounded Lk and Betting-Lk—which are highly similar to a combi-

18
The picture (obviously) does not change if we also allow for role-dependent level distribu-

tions in a Betting-Lk or a asymmBetting-Lkmodel. For the symmetric games, the latter models

are so-to-speak role-dependent already. And in the hide-and-seek game, the LogL is -2283/-2300

instead of -2297 but the MSE increases substantially (0.0140/0.0088 instead of 0.0066). On top, for

the model with a symmetric level-0, I again obtain a level distribution for hiders that resembles

the W-pattern I found for asymmBetting-Lk, while the model with an asymmetric level-0 yields

a W-pattern for both roles (though far less pronounced than in the other models).

19
The margin increases further when I treat hiders and seekers as separate data sets (which

puts more weight on the hide-and-seek game due to the weighting of the average). In that case,
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nation of BettingNumbers + Uniform with additional layers of best-response

behaviour—are outperformed by the standard NashEqm/ Standard Lk models.

This means that either the prevalence of best-response behaviour is very di�er-

ent between games—or even negligible altogether.

Model Mean Squared Prediction Error

Salience-Lk 0.0332

asymmBetting-Lk 0.0100

Betting-Lk 0.0085

LuckyNoEqm 0.0082

Bounded Lk 0.0074

NashEqm/Standard Lk 0.0071

BettingNumbers + Uniform 0.0065

predicted BettingNumbers + Uniform 0.0066

Table 4: Mean squared prediction errors from a leave-one-out procedure: I �t the

parameters of each model on all games but the one for which the prediction errors

are calculated. I do this so that each game’s behaviour is predicted once. I report

the average (weighted by the number of frames) squared prediction errors over

all predictions. The predicted BettingNumbers + Uniform uses the options’

�tted ‘betting attraction’ using the regression from Section 4.3 instead of the

BettingNumbers.

4.3 ‘BettingNumbers’: Representativeness & reachability

When motivating why players should be using ‘BettingNumbers’ in strategy-

isomorphic games, I have argued that players use ‘BettingNumbers’ when they

face “evidently equivalent” best-responses to their opponents’ candidate strate-

gies. Further, I have argued that we can �nd an inspiration in psychology re-

search as to what may be in�uencing choice amongst “evidently equivalent items”

(Bar-Hillel, 2015). In this section, I relate ‘BettingNumbers’ to the psychologic

concepts that have been suggested to determine choices in BettingTask-like

setups, and that by the ‘lottery player’s fallacy’ hypothesis should also be deter-

mining choice in the games.

From her review of the empirical literature, Bar-Hillel (2015) concludes that

choice amongst “evidently equivalent items” is likely to be governed by the items’

BettingNumbers + Uniform exhibits a mean squared prediction error of 0.0068, followed by

BoundedLk with 0.0082. NashEqm/Standard Lk, predicting particularly badly in hide-and-

seek, then comes in fourth with 0.0090.
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coe�cient s.e. p-value

(Intercept) −0.45 (0.08) 5 · 10−6

negative 0.03 (0.12) 0.8251
positive −0.05 (0.04) 0.2361
average SalienceRating 0.25 (0.07) 0.0010
average RepresentRating 0.16 (0.07) 0.0404
relative position 0.46 (0.07) 1 · 10−7

(relative position)
2 −0.39 (0.06) 2 · 10−7

negative · average SalienceRating −0.24 (0.23) 0.3110
positive · average SalienceRating 0.16 (0.07) 0.0199

R
2 0.78

AIC −97.91
Num. obs. 44 (11 frames with 4 options each)

Table 5: Regression of relative choice frequencies in the BettingTask (the op-

tions’ ‘betting attraction’) on label characteristics (generalised linear model with

a power-link function where λ = 0.2).

representativeness (measured in RepresentRating) and their “reachability”.

Reachability includes salience (measured in SalienceRating), valence (positive,

negative, or neutral), and physical centrality (measured by using an option’s

relative position—0.5 for the middle, 1 for the right-most location—together with

its squared term). Table 5 reports an exploratory regression using the above vari-

ables. The regression uses a generalised linear model with a power-link function

where λ = 0.2 was the estimated Box-Cox transformation parameter. While

this model does not account for the fact that we are dealing with distributions, it

allows for a straightforward interpretation of the coe�cients, at the same time

accounting for the heteroskedasticity in the original BettingTask data.

Result 3. Representativeness and “Reachability” (valence, salience, and physical

centrality) account for what attracts choices in a BettingTask.

As we can see from Table 5, the four psychological concepts that Bar-Hillel

(2015) hypothesised should play a role in choice amongst “evidently equivalent

items” do indeed account for what options participants choose in the Betting-

Task: (i) Being rated as more salient (“average SalienceRanking”), (ii) being

positioned in the middle (to see this, combine “relative position” and its square);

(iii) having a positive connotation when the item is salient (“positive · aver-

age SalienceRating”; in the context of our frames, this essentially means that

the positively connoted item is presented along with three negatively connoted
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items); and (iv) being rated as being representative (“average RepresentRat-

ing”).

While this analysis has to be taken with caution for a whole number of rea-

sons (i.a., because the set of frames is small and rather peculiar), it is in accor-

dance with what seems to determine choices in lottery games in general. Further-

more, when I use the �tted values instead of the empirical ‘BettingNumbers’

in the out-of-sample prediction from Section 4.2, the mean squared prediction

error is still clearly lower than that of any of the level-k variants (see the �nal

row in Table 4). The fact that the predictive power hardly su�ers at all supports

the idea that the regression does pick up what is crucial about the frames.

5 Discussion

In this paper, I have looked at games in which players’ strategies are indistin-

guishable once we remove the strategies’ labels. Many of these games are at the

heart of game-theoretic conceptualisations of the world we live in, capturing im-

portant elements of every-day life. This paper focuses on versions of the games

that incorporate a key aspect of reality, namely that options carry descriptive
labels. As I have pointed out, the literature currently o�ers no satisfying expla-

nation for behaviour in these games, in particular when it comes to games that

are not pure coordination games.

This paper starts out by looking at the data from several studies on a number

of such “strategy-isomorphic games” with non-neutral labels. My �rst observa-

tion is that with the exception of coordination games, behaviour in these games

is correlated clearly. Furthermore, the behaviour is correlated clearly with be-

haviour in individual lotteries played on the same frames. Following psycholog-

ical research on choice among “evidently equivalent items” (Bar-Hillel, 2015), I

regress the lottery choices (the items’ ‘betting attraction’) on measures of the op-

tions’ “representativeness” (the absence of prominent, ‘non-random’ properties)

and their “reachability” (salience, valence, and physical centrality).

It turns out that the options’ (�tted) ‘betting attraction’ is a strong predictor

of behaviour also in the games. This is surprising because it is an exploitable

pattern. All the more surprising, I do not �nd any clear evidence of people best-

responding to the behavioural pattern. None of the models that allow for types

that best-respond to ‘choice by betting attraction’ comes even close to match-

ing the out-of-sample predictive power of a simple mixture of uniformly mixing

players (as in equilibrium or in standard level-k) with players choosing by ‘bet-

ting attraction’. In fact, the closest level-k contestant in out-of-sample predic-

tions places virtually no weight on any of the best-responding levels.

These results are consistent with the idea that a substantial fraction of peo-
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ple concludes after an initial strategic-reasoning phase that any option is as good

as any other, and that therefore, strict strategic reasoning is no longer needed.

Instead, these people choose to ‘take a chance and bet on’ one of the—now ev-

idently equivalent—options. This simplistic decision strategy accounts for both

facts: That (i) people follow exploitable patterns in experimental implementa-

tions of strategy-isomorphic games with non-neutral frames and (ii) that these

exploitable patterns are correlated accross games.

The facts imply the well-documented seeker advantage in hide-and-seek games

(e.g., Rubinstein et al., 1997, or Eliaz and Rubinstein, 2011): If both hiders and

seekers display a mixture of uniform mixing and choices that in the end are deter-

mined by representativeness and reachability, seekers will win more often than

under the uniform-mixture Nash equilibrium. From the literature, we know that

the seeker advantage can be reversed when the prize is a bad (when the hider

hides a “mine” that a “seeker” should avoid, Rubinstein et al., 1997, or Penczyn-

ski, 2016). This observation would follow from the proposed decision strategy,

too. Apart from this, the evidence on the reasons for the seeker advantage is

ambiguous: being a second-mover seems to lead to more sophisticated reason-

ing (Penczynski, 2016).
20

However, being a second-mover by itself does not lead

to a payo� advantage (Eliaz and Rubinstein, 2011, this latter �nding also would

follow from the proposed decision strategy).

Finally, if players virtually stop thinking strategically about their opponents

even in evidently strategic situations, they are all the more likely to do so in

a national-lottery context: The strategic element of the lottery situation seems

much less obvious compared to a hide-and-seek game, for example. Thus, the

sketched decision strategy not only gives a reason for why representativeness

and reachability determine choice in what should be highly strategic situations.

The ‘lottery player’s fallacy’ also provides an explanation for two long-standing

empirical puzzles—the seeker advantage in hide-and-seek games and the fact that

players in national lotteries do not shy away from choosing the same numbers

as others.

20
This is not in line with my estimates for a Betting-Lk model with role-dependent level

distributions but symmetric level-0 (cf. footnote 18), while a �tted model with role-dependent

distributions and asymmetric level-0 shows a tiny di�erence in the above direction when mea-

sured by average levels (there is no di�erence in the medians; ibd.).
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Appendix A Full data

Player role frame location 1 location 2 location 3 location 4

coordinators 86 0 10 4

polite-rude-honest-friendly 6 54 12 28

6 6 14 74

abaa 14 72 13 1

6 88 6 0

hate-detest-love-dislike 2 6 88 4

1-2-3-4 38 17 29 15

aaba 5 27 54 14

discoordinators 39 14 18 29

polite-rude-honest-friendly 28 20 32 20

17 27 23 33

abaa 18 21 38 24

17 40 29 15

hate-detest-love-dislike 16 29 26 29

1-2-3-4 21 32 30 17

aaba 26 24 32 18

Ace-2-3-Joker 31 17 21 31

baaa 34 23 19 23

aaab 31 22 18 29

hiders 23 23 43 11

polite-rude-honest-friendly 15 26 51 8

21 26 34 19

abaa 15 29 33 23

15 40 34 11

hate-detest-love-dislike 11 23 38 28

1-2-3-4 25 22 36 18

aaba 22 35 19 25

seekers 29 24 42 5

polite-rude-honest-friendly 8 40 40 11

7 25 34 34

abaa 9 21 53 17

16 55 21 8

hate-detest-love-dislike 20 21 55 14

1-2-3-4 20 18 48 14

aaba 13 51 21 15

to-your-right players 15 30 32 24

polite-rude-honest-friendly 22 22 33 24

18 22 33 27

abaa 15 19 34 32

16 20 33 31

hate-detest-love-dislike 23 17 30 30

1-2-3-4 17 21 39 23

aaba 22 23 29 26

Ace-2-3-Joker 25 23 31 21

baaa 15 26 34 25

aaab 24 23 28 25

Table A.1: Full data of the games (relative choice frequencies).
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Task frame location 1 location 2 location 3 location 4

BettingTask 25 29 36 11

polite-rude-honest-friendly 12 8 53 27

16 34 35 16

abaa 13 33 41 13

6 58 26 11

hate-detest-love-dislike 7 12 69 12

1-2-3-4 18 21 36 25

aaba 13 36 36 15

Ace-2-3-Joker 33 14 19 34

baaa 27 25 24 24

aaab 18 21 34 26

HiderBettingTask 40 19 19 22

polite-rude-honest-friendly 12 17 50 21

24 17 28 31

abaa 9 53 21 17

14 59 16 12

hate-detest-love-dislike 12 14 53 21

1-2-3-4 19 28 31 22

aaba 26 19 40 16

Ace-2-3-Joker 28 14 29 29

baaa 31 24 19 26

aaab 16 22 22 40

RepresentRating
†

10 32 27 31

polite-rude-honest-friendly 34 7 26 32

38 32 27 3

abaa 38 5 30 28

29 19 30 21

hate-detest-love-dislike 34 15 20 30

1-2-3-4 33 23 16 28

aaba 34 23 8 35

Ace-2-3-Joker 39 15 17 29

baaa 11 35 25 29

aaab 43 25 24 8

SalienceRating
†

94 2 4 0

polite-rude-honest-friendly 14 57 21 8

5 6 8 81

abaa 2 91 4 4

13 72 11 4

hate-detest-love-dislike 16 19 62 3

1-2-3-4 38 21 25 16

aaba 3 4 93 1

Ace-2-3-Joker 28 3 3 66

baaa 92 3 5 0

aaab 5 6 3 86

†
In case a participant rated several items as most representative/most salient, her count would be evenly distributed on

all corresponding locations.

Table A.2: Full data from the complementary tasks (relative choice frequencies;

for the Rating tasks: relative frequencies of location ranked the highest).



Appendix B Payo�matrices for the di�erent games

Seeker

1
st

Option 2
nd

Option 3
rd

Option 4
th

Option

Hider 1
st

Option (0,1) (1,0) (1,0) (1,0)

2
nd

Option (1,0) (0,1) (1,0) (1,0)

3
rd

Option (1,0) (1,0) (0,1) (1,0)

4
th

Option (1,0) (1,0) (1,0) (0,1)

Table B.1: Hide&Seek game

Player 2

1
st

Option 2
nd

Option 3
rd

Option 4
th

Option

Player 1 1
st

Option (1,1) (0,0) (0,0) (0,0)

2
nd

Option (0,0) (1,1) (0,0) (0,0)

3
rd

Option (0,0) (0,0) (1,1) (0,0)

4
th

Option (0,0) (0,0) (0,0) (1,1)

Table B.2: Coordination game

Player 2

1
st

Option 2
nd

Option 3
rd

Option 4
th

Option

Player 1 1
st

Option (0,0) (1,1) (1,1) (1,1)

2
nd

Option (1,1) (0,0) (1,1) (1,1)

3
rd

Option (1,1) (1,1) (0,0) (1,1)

4
th

Option (1,1) (1,1) (1,1) (0,0)

Table B.3: Discoordination game
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Player 2

1
st

Option 2
nd

Option 3
rd

Option 4
th

Option

Player 1 1
st

Option (0,0) (0,1) (0,0) (1,0)

2
nd

Option (1,0) (0,0) (0,1) (0,0)

3
rd

Option (0,0) (1,0) (0,0) (0,1)

4
th

Option (0,1) (0,0) (1,0) (0,0)

Table B.4: To-your-right game


