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Abstract: In economic experiments, best-response rates typically are far below what

game theory would suggest even when we allow for typical error rates. �is paper tests

the conjecture that observed action-belief inconsistencies may be due to belief uncer-

tainty. We use a belief-sampling model that has been highly successful in accounting for

behaviour in multi-armed bandit problems as well as for aggregate outcomes in games,

markets, and surveys, and test its predictions in two experiments that are inspired by

standard experiments on strategic reasoning. �e data shows that higher belief uncer-

tainty leads more frequently to choices that are inconsistent with people’s stated beliefs,

to costly errors, and—in an experiment that directly tests the mechanism—to inconsis-

tent belief reports. Importantly, the uncertainty-inconsistency relationship continues to

hold when we control for the costs of an error econometrically in several ways.

Keywords: Best Response, Belief Elicitation, Discoordination Game, Knightian Uncer-

tainty, Errors, Elusive Beliefs

1 Introduction
Experiments examining best-response rates in economic games have reported

best-response rates that are surprisingly low (see Table 1 for a non-exhaustive

overview). Even if we allow for standard error rates in the range of 5-10%, the

§
We thank Fabian Dvořák, �omas Ha�enbach, Jordi Brandts, Miguel Costa-Gomes, Georg

Weizsäcker, Ian Krajbich, Wieland Müller, Tomasz Strzalecki, Wolfgang Luhan, Alexander K.

Wagner, Simon Gächter, Roberto Weber, Marie Claire Villeval, Dirk Sliwka, Nick Netzer, the re-

search group at the �urgau Institute of Economics, participants of the microeconomics seminar

at the University of Konstanz, the �urgau Experimental Economics Meeting (theem) 2017, and

the ESA European Meeting 2017 for helpful comments. We are grateful to Miguel Costa-Gomes,

Georg Weizsäcker, and Pedro Rey-Biel for sharing their data with us. �is paper has been cir-

culated previously under the title “Elusive Beliefs: Why Uncertainty Leads to Stochastic Choice

and Errors.” Note: the order of authors does not convey information on individual contributions.

We have two projects together and agreed to alternate between being �rst and second authors.
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reported best-response rates seem excessively low. Are the participants simply

not intelligent enough to react to their reported beliefs optimally, do they not

care enough, or do they have a preference for mixing? In this paper, we propose a

di�erent explanation: belief uncertainty. Intuitively, when people are convinced

they know what their interaction partners will do, they will report a belief and

a choice that are consistent with each other. On the other hand, when people

are uncertain about what they should expect their opponents to do, they may

not place a lot of weight on the belief they report and choose an action that is

inconsistent with the stated belief.

Let us brie�y underpin our general intuition with some data from the liter-

ature. Taking two prominent examples, Costa-Gomes & Weizsäcker (2008) �nd

best-response rates as low as 52% in 3x3 normal-form games, while Rey-Biel

(2009) reports 66-69% for similar 3x3 games. Our conjecture is that the di�er-

ence in best-response rates comes from di�erent levels of uncertainty about the

likely choices of participants’ opponents.

Unfortunately, there is no direct way of testing the conjecture with the data

from the two studies given that the studies were not meant to analyze our hy-

pothesis. However, we can proxy participants’ uncertainty by the variance in

beliefs between participants (which proxies the variance of individuals’ belief

reports, understanding the belief report as a random variable; by the belief-

sampling model we discuss below, the variance of an individual’s report is a

direct expression of belief uncertainty). For our hypothesis to be of any value,

the variance in beliefs in Costa-Gomes & Weizsäcker’s data ought to be higher

compared to Rey-Biel’s data. �at is indeed the case.
1

Reference Best response rate Type of game

Costa-Gomes & Weizsacker (2008) 52% (59%) 3x3 games (beliefs before actions)

Danz, Fehr & Kübler (2012) 63% variable-sum 3x3 games

Hyndmann et al. (2012) 66% (56%) 3x3 (4x4) games

Ivanov (2011) 68% (57%) 3x3 (2x2) games

Manski & Neri (2013) 89% 2x2 games

Nyarko & Scho�er (2002) 75% 2x2 games

Rey-Biel (2009) 69% (65%) const. sum (var. sum), 3x3 games

Table 1: Best-response rates to �rst-order beliefs in the literature.

1
Using the mean squared deviations from the across-player-average belief within each game

and player role (row or column) to measure the variance, we �nd an average of 30% in Costa-

Gomes & Weizsäcker vs. an average of about 10% in Rey-Biel’s study.
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In this paper, we pick up a model that has been popular in operations re-

search as well as some areas of psychology. In that literature, the model goes

under the name of posterior sampling or �ompson Sampling.
2

It has been shown

to account well for how people deal with an exploration-exploitation tradeo� in

multi-armed bandit tasks (e.g., Schulz, Konstantinidis, and Speekenbrink, 2015;

Gershman, 2018).
3

Mauersberger (2019) shows that the model predicts aggregate

behaviour well also in economic contexts. In particular, he shows that it clearly

outperforms four competing models (Nash equilibrium, quantal-response equi-

librium, Bayesian learning, and uniform randomisation) in a number of di�er-

ent games, markets, and surveys. Celen, Geng & Li (2019) also use the model

to make sense of the decisions of their experimental participants, discarding

quantal-response equilibrium for their setup.
4

Our goal is twofold: we want to test whether the model indeed provides an

explanation for the low empirical best-response rates reported in Table 1. And

we want to test the model’s mechanism on an individual level, using clear ex-
ante hypotheses based on the model. To do so, we have participants play pure

discoordination games on di�erent label sets that are known to induce very dif-

ferent choice distributions. Participants play against historical data from earlier

sessions (which they know). Before they make their decision, they are shown

a sample of di�erent sizes from the historical data (excluding the decision they

are playing against, which comes from a di�erent previous participant in each

round; there is no feedback between rounds). A�er making their choice, we ask

for participants’ probabilistic beliefs. In our ‘mechanism treatment’, this proce-

dure is followed by a repetition of the belief-elicitation task a�er a pause of seven

seconds, without additional information being displayed.
5

�e data support the theoretic predictions: higher belief uncertainty leads to

lower belief-action consistency. Moreover, the ‘mechanism treatment’ provides

2
�e model was re-invented independently in Celen, Geng & Li (2019) and Wol� and Bauer

(2018).

3
In the typical multi-armed bandit task, a participant has to choose between the top cards

from several randomly-shu�ed stacks of cards (with in�nite supply of cards). Each chosen card

yields an unknown reward, where the distributions of rewards are unknown, too. Hence, partici-

pants have to explore the stacks and, a�er some sampling, face the above exploration-exploitation

tradeo� of whether to keep sampling from several stacks or to exploit their acquired information

by drawing only from the stack that yielded the highest rewards so far.

4
�e authors argue that quantal-response equilibrium either does not �t the data (under one

of two possible conceptualizations) or leads to a circular-reasoning problem (under the other).

5
In order not to push participants in any direction, the second elicitation was introduced as

follows: “Today, we are interested in whether estimates change over time. �erefore, we would

like to ask you once again to tell us your (current) estimate of the probabilities with which the

participant of the previous experiment randomly allo�ed to you has chosen the individual boxes

of the current arrangement.”
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evidence for the model’s main mechanism: participants o�en come up with dif-

ferent beliefs when asked twice, and the model predicts when they will do so.

To motivate more clearly what we mean by ‘uncertain beliefs’, consider the

following example: We know for sure what the odds of a fair coin �ip are. When

o�ered a bet on this coin �ip, it is easy to see whether it is worth accepting the

bet or whether the odds-maker tries to trick us. Now imagine a colleague o�ers

you a bet over a bo�le of wine on your favorite football team winning the next

match. It is the �nal match for the championship, your team is the home team,

and your team performed be�er overall during the season. But then, one of the

top scorers of your team is injured. So, you start thinking about your belief on

how likely your team is to win the match. In the heat of your conversation with

your colleague, you are optimistic and think the odds are 60:40 that your team

wins, so you accept the bet. However, on your way home, you think again of the

top scorer’s injury and judge the odds to be down to 33:67. Over the next few

days, you keep re-considering and re-“adjusting” your beliefs (without any new

information coming in, and without you coming any closer to a stable estimate).

If we took the average estimate, we might come to a winning probability of 50%.

�us, for both the coin �ip and the football match it would have been sensible

to report a ��y-��y belief when asked for it. However, there is a di�erence. For

the coin �ip, there is no sensible answer other than ��y-��y. For the football-

match, 50% is just one of many possible answers, and actually, your assessment

changed whenever you thought about the match. Arguably, people face this kind

of uncertainty about the probability of events very o�en. In the belief-sampling

model, people have a (Dirichlet-distributed) prior over possible probability distri-

butions. We call the resulting distribution over probabilities a belief distribution,

because it is a distribution over di�erent possible beliefs.

�e di�erence to the standard rational-choice model (and to popular models

of stochastic choice) is that agents do not reduce their belief distribution to a sin-

gle probability (distribution), potentially because they have no direct conscious

access to the belief distribution. Instead, agents draw from the belief distribu-

tion whenever they need to act on their belief, reacting to the randomly drawn

probabilities as if they were the true probabilities. If the underlying belief distri-

bution is spread out and many di�erent beliefs are likely to be drawn, the agent

is uncertain about what the ‘true’, that is, the reduced probability is. We call the

variance of the belief distribution its belief uncertainty.
6

�e model has important implications. For the purposes of this paper, the

central implication is that high belief uncertainty will lead to low observed best-

6
See Pouget, Drugowitsch & Kepecs (2016) for a neuroscience perspective on uncertainty.

Just like we do, the authors de�ne uncertainty about some proposition as the variance of a pos-

terior distribution (p. 369).
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response rates and to errors, where we de�ne an error as a choice inconsistent

with the reduced probability under the agent’s belief distribution. Importantly,

these inconsistent choices do not stem from a preference for hedging under dif-

ferent possible utility functions as in Cerreia-Vioglio, Dillenberger & Ortoleva

(2015) or for avoiding regret (Dwenger, Kübler & Weizsäcker, 2018), nor do agents

condition their consistency on the costs of making errors (e.g., McKelvey & Pal-

frey, 1995). While it is not obvious how our experimental manipulation would

trigger preferences for hedging or avoiding regret—and even less obvious how

such a triggering would exactly parallel our induction of belief uncertainty—we

control for error costs in a number of ways in our statistical analysis.

A second realization comes from looking at the interaction of the proposed

belief-sampling process with the arrival of new information. �e important re-

alization here is that more information on an uncertain event does not always

lead to more consistent behavior. Loosely speaking, when new information and

a person’s prior belief are aligned, more information will lead to more consistent

behaviour. However, when the new information contradicts the person’s prior

belief, over a certain interval the uncertainty in that person’s posterior belief in-

creases in the amount of information, which decreases consistency. So, without

further information about the relationship between a person’s prior and her new

information we cannot predict whether new information will induce a higher or

a lower best-response rate.

2 Related Literature
�e belief-sampling model has been shown to account for behaviour in experi-

mental multi-armed bandit tasks (e.g., Schulz, Konstantinidis, and Speekenbrink,

2015; Gershman, 2018). On top, it also is known to exhibit positive normative

characteristics in that it is regret-minimizing and in that it allows the agent to

asymptotically learn the truth in speci�c bandit-task variants (e.g., Agrawal and

Goyal, 2012; May et al., 2012; Francetich and Kreps; 2018).

In economics, the model has been used independently in two other papers

so far. Celen Geng & Li (2019) use the model to explain their experimental �nd-

ing that people do not seem to believe that others will use available information

rationally. In contrast, Mauersberger (2019) and we start from the model, ap-

ply it to economic questions and test whether the model’s predictions bear out

in general economic environments. �e two papers are highly complementary.

Mauersberger (2019) looks at predictions on the aggregate level and shows con-

vincingly that the model outperforms other models including quantal-response

equilibrium in three completely di�erent applications. We, in change, provide

two speci�cally-tailored experimental tests of the mechanism, focussing on the
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long-standing empirical puzzle of wide-spread belief-action inconsistency in pa-

pers in experimental game theory.

A recent paper by Drerup, Enke & von Gaudecker (2017) nicely complements

our paper. �ey econometrically relate the degree of belief uncertainty to the

decision to participate in the stock market and show that beliefs are predictive

only for those who have li�le uncertainty in their beliefs. �us, while in contrast

to our se�ing, they cannot manipulate uncertainty exogenously, their �ndings

can nicely be explained by the belief-sampling model. �ey hypothesize that

non-participants have high uncertainty because they choose not to get informed

(because they rely on other choice rules, such as listening to friends and relatives

who advise to stay away from stock ownership). While we cannot exclude that

their hypothesized channel is at work, we can identify that the relationship runs

(also) in the opposite direction. Non-participants may commit more mistakes

because their beliefs are based on li�le information. Plus, if they anticipate (some

of) this e�ect, they may shy away from stock ownership because they are afraid

of commiting expensive mistakes due to their lack of knowledge.

Given our focus on belief-action consistency, there is a whole strand of liter-

ature that is directly related (for examples, see Table 1). In a prominent contri-

bution to that literature, Costa-Gomes and Weizsäcker (2008) �nd that, roughly

speaking, their participants best-respond to uniform mixing in their actions but

best-respond to their opponent’s best-response to uniform mixing in their be-

lief reports. While plausible, it is unclear how these �ndings would translate

to the setup we study. First of all, if participants naı̈vely respond to the game,

this may mean either uniform mixing (our participants are facing a pure disco-

ordination game), or a best-response to the information they are shown. Our

data correspond to neither of the two. It also is unclear what Costa-Gomes and

Weizsäcker’s results could mean for the belief reports in our se�ing: there is no

obvious way of thinking more strategically about the situation our participants

are facing. Most importantly, it is not obvious how their �ndings would lead to

the treatment e�ects we �nd.

Many of the ideas behind our motivation for this study can be found already

in the literature on choice under uncertainty.
7

�e main question in this litera-

ture is how people make their decisions when they face uncertainty and there is

no clear way of assigning probabilities to the possible states of the world. �is lit-

erature departs from Savage’s (1954) idea that when agents face ambiguity, they

simply will form subjective beliefs and act on those subjective beliefs as if the

beliefs were proper probabilities. �ere is a whole array of how the correspond-

ing non-Bayesian subjective probabilities are modelled, and how they are used

7
Even our introductory example in the previous section is similar to the examples given in

this literature, cf., e.g., Gilboa, Postlewaite & Schmeidler (2008).
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by the agents.
8

�e approach that probably is closest to ours in that agents decide based on a

single potential belief realization is the multiple-priors approach as axiomatized

in Gilboa & Schmeidler (1989). In models following this approach, agents choose

among the alternatives using a maximin-utility criterion across all probabilities

they consider possible (e.g., Gilboa & Schmeidler, 1989). Other approaches use

some form of expectations maximization (over a ‘probability distribution that

does not add up’: Schmeidler, 1989; or over some transformation of certainty

equivalents: Klibano�, Marinacci & Mukerji, 2005). In either case, the models are

about agents who consistently make a speci�c type of choice, namely ambiguity-

averse choices, for example in Ellsberg-type se�ings. Our aim complements this

literature, as we focus on explaining the variance within people’s choices, and

on the likelihood of observing inconsistent choices.

�ere is a huge and important literature on stochastic choice. A popular

model is the random-error model (like in Harless & Camerer, 1994), according

to which agents make mistakes with a �xed probability. �is model seems to

be at odds with the low belief-action-consistency rates referred to in Table 1, as

the error probability usually is assumed to be in the range of 5-10%. On top, the

model would not predict our treatment e�ects as the error rate is assumed to be

constant accross decisions.

Another popular type of model are models incorporating Fechner-type er-

rors (e.g., Luce, 1959; McKelvey & Palfrey, 1995; also known as logistic-choice or

quantal-response models; the standard dri�-di�usion model, Ratcli�, 1978, will

also lead to the same choice distribution). In this type of model, agents make

mistakes more o�en, the smaller the utility di�erence is between the available

alternatives. In other words, what is important for choice consistency is the ex-

pected cost of making a mistake. We will control for error costs in our statistical

analyses. �e conceptual di�erence between such models and belief sampling is

best seen in an example: consider an agent in a two-player coordination game

with options X and Y . �e game pays 1 Euro in case both players choose the

same action. If the agent is convinced that the other player chooses X with a

probability of 51%, the agent always chooses X under belief sampling (because

the agent always samples the same (51%, 49%)-belief). In contrast, a logistic-

choice model would predict a close-to-uniform choice distribution.
9

Two additional types of stochastic-choice models are models that rest on the

agent either having random preferences (as, for example, in Becker, DeGroot &

Marschak, 1963, or Loomes & Sugden, 1995, where the parameters of the utility

8
For a recent review, cf. Etner, Jeleva & Tallon (2012), who also discuss important economic

applications of the models.

9
We expect error costs to ma�er, which is also in line with our �ndings. What this paper

shows is that belief uncertainty ma�ers on top of error costs.
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function are drawn from a distribution before each choice) or on the agent’s

uncertainty about her true utility function (as, for example, in Cerreia-Vioglio̧ et
al., 2015). In both cases, however, participants should always produce the same

belief report when asked twice under a binarized scoring rule, because both types

of model respect �rst-order stochastic dominance.

Given the mechanism of the belief-sampling model, two additional mod-

els come into mind: Action-sampling (claimed by Selten in Selten & Chmura,

2008) and payo�-sampling equilibrium (Osborne and Rubinstein, 1998). Action-

sampling equilibrium represents the long-run outcome when agents best-respond

to a restricted sample of their opponents’ prior actions. Payo�-sampling equilib-

rium corresponds to the long-run outcome when agents sample for each of their

actions a �xed number of payo�s they achieved using the corresponding action,

then choosing the action with the highest payo�. For both concepts it is not clear

how they would �t our setup. We present participants with samples of di�erent

sizes of what (unrelated) others have done. Given that in many cases, they see

a distribution of many previous choices, why would they arbitrarily eliminate

some of those choices? For if they don’t, both models would predict consistent

best-responding to the provided information (which is not what we �nd).
10

Last but not least, the belief-sampling model is related to the vast literature on

learning. By introducing a di�erent form of stochasticity, the model also provides

a new perspective on learning in unknown situations. When facing a decision

for the �rst time, belief uncertainty is likely to be high. In the model, this leads to

high error rates. Hence, there is scope—and need—for learning. As the situation

is repeated with feedback, the agent gathers more and more observations. In

most situations, gathering more information will decrease the variance of the

belief distribution, leading to less errors. Hence, the agent learns how to behave

in the situation by identifying the situation be�er and be�er, even when there is
no change in the reduced belief. �is sets us apart, for example, from models of

belief-based learning like �ctitious play or Cournot learning.

With respect to our experiment, the only type of learning that could interfere

with the conclusions from our feedback-free environment is feedback-less learn-

ing (Weber, 2003). According to this idea, experiment participants learn how to

play a game even without feedback. We therefore should see increasing best-

response rates over time. We address this potential confound by (individually)

randomizing the order in which participants receive the di�erent sample sizes.

On top, we control for the period in our analysis, and hence, implicitly also for

any form of feedback-less learning on how to play a best-response.

10
Also, at least the payo�-sampling equilibrium is psychologically unintuitive for quasi-

continuous action spaces such as our belief-elicitation task: How would anybody draw a sample

for each of the innumerable potential belief reports?
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3 Main Experiment
In our main experiment, we manipulate belief-uncertainty exogenously by giv-

ing varying amounts of information about the decisions of the relevant target

population of other players. To be able to do so, we let participants play against

historical data from an earlier experiment (which they know). �us, participants

in our experiment face a task that is de facto an individual-decision-making task,

but that is mimicking a typical experimental game.

Our participants face a series of 24 discoordination tasks in each of which

they have to choose one out of four labeled boxes. If they choose a di�erent

box than a randomly-selected participant of the earlier experiment, they receive

7e and nothing otherwise. �e randomly-selected ‘opponent’ and the labels of

the four options vary across tasks and we use a large variety of le�ers, numbers

or symbols as labels. For example, we start with labels “1,2,3,4” in task 1 and

“1,x,3,4” in task 2. �e complete list of all labels is depicted in Figure B1 in the

appendix. �e order of the tasks is the same for all participants.

�e decisions our participants play against come from the study of Bauer &

Wol� (2018) that had 360 participants play the actual discoordination games on

the same series of labels. Before choosing an option and reporting a belief, par-

ticipants enter an information stage in which they receive varying numbers of

observations from the choice distribution they are playing against.
11

�e within-

participant treatment is the number of observations that we sample and display

to the participants, which we call n. �e amount of information ranges from 0

to 360 with four periods of zero information.
12

We randomize the order of the

di�erent n for n < 360 across participants and inform them that the decision of

“the other player” is not contained in the displayed information. In the last pe-

riod, n = 360 for all participants and thus, the information contains the relevant

decision (which participants know).

In the experiment, we use a four-option setup. We do so for experimental rea-

sons, acknowledging that there is a drawback in linking our experiment to the

two-option setup that we use to present the belief-sampling model in Section

4: for the four-option case, we have to rely on simulations to support our pre-

dictions. We nonetheless prefer the four-option-experiment, because in a two-

option setup, even a randomly clicking person would produce a best-response

11
Note that the di�erent labels induce ‘interesting’ data pa�erns in Bauer & Wol�’s (2018)

study. Choice distributions are signi�cantly di�erent from uniformity at a 5%-level in 15 out of

24 se�ings (χ2
-test). 15 out of 24 se�ings are clearly more than the expected 1.2 se�ings under

equilibrium behavior. See Table B1 for the data, and Figure C1 for an example screen of how the

sample of earlier choices was shown to participants.

12
�e full set of information levels n is {0, 9, 12, 15, 18, 36, 64, 92, 120, 148, 176, 204, 232,

260, 288, 316, 345, 348, 351, 354, 360}.
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rate of 50%. Hence observed consistency will be generally high in this case, which

makes it likely that we would face ceiling e�ects. In the four-option se�ing, the

random best-response rate is reduced to 25%. Also, with four options, we can

create much more variance in the label pa�erns than with two options. �us, we

can keep up participants’ interest for more rounds.

Along with every choice in the ‘game’, we elicit probabilistic beliefs a�er the

action for every period. Participants have to report a set of four probabilites,

one for each box. We incentivise the belief reports via a Binarized Scoring Rule

(McKelvey & Page, 1990, Hossain & Okui, 2013). �e Binarized Scoring Rule uses

a quadratic scoring rule to assign participants lo�ery tickets for a given prize, in

our case another 7e. �e lo�ery procedure accounts for deviations from risk

neutrality and, under a weak monotonicity condition, even for deviations from

expected utility maximization (Hossain & Okui, 2013). For the belief question,

we use the opponent frame: “What is the [respective] probability with which the
participant of the preceding experiment you were randomly matched to chose the
individual boxes of the current set-up?”At the end of the experiment, we randomly

select two periods for payment. In one period, the outcome of the ‘game’ is paid

and in the other period, the belief task is paid.

Procedures

�e experiment was programmed using z-tree (Fischbacher, 2007). We use data

of 55 participants recruited with ORSEE (Greiner, 2015). All sessions took place

in the LakeLab at the University of Konstanz and lasted for approximately 75

minutes, including a short questionnaire at the end of the session which paid

5e. �e last item of the questionnaire was a reliability-of-answers measure which

gives participants the opportunity to indicate how reliable their data is in their

opinion. �e average payment was 13.27e.

4 �e belief-sampling model
In this section, we present the belief-sampling model. �en, we relate it to ob-

served best-response rates and present consequences of information updating

for error rates at the end. For ease of exposition, we present the model for a two-

option se�ing, before we derive the predictions for our four-option experiment

through simulations in Section 5.

4.1 Belief sampling in a two-option discoordination task
Assume an agent is facing a two-option variant of the discoordination task from

our experiment, in which the set of alternatives is A = {L,R}. �ere is a prob-
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ability φ, φ ∈ [0, 1], that the current opponent chooses L (and a corresponding

probability 1 − φ that the opponent chooses R). However, the true probability

φ∗ of L-choices in the population is unknown and hence, the agent has to form a

belief φ̂ about φ. In our discoordination se�ing, the agent strictly prefers R over

L if and only if φ̂ > 0.5.

In this paper, we assume that the belief is a non-degenerate probability dis-

tribution over all possible values of φ. For example, the player might assign a

probability mass of 40% to φ being between 0.7 and 0.8, and distribute the re-

maining 60% of the probability mass over [0, 0.7] ∪ [0.8, 1]. Hence, the belief is

a probability distribution φ ∼ (µq, σq) with continuous density function q(φ)

where

∫ 1

0
q(φ)dφ = 1 and q(φ) > 0,∀φ ∈ [0, 1]. Considering this belief distribu-

tion, the player faces a compound lo�ery: with density q(φ′) the probability that

R is be�er than L is φ′. However, in standard theory this subtlety does not play

a role, as the best-response depends only on the expected probability the agent

assigns to R being the be�er option, denoted by:

Eq[φ] =

∫ 1

0

φ · q(φ)dφ = µq (1)

In standard theory, the player will choose R whenever µq > 0.5.

Stochastic choice and errors

In the belief-sampling model, the agent draws one value φr from q(φ) whenever

the belief is consulted. �is might be because players do not have direct access to

q(φ), or simply because they are not able to compute µq. �e draw φr is then used

to determine the optimal action a∗(φr) instead of a∗(µq). Hence, not only the

mean but also the whole distribution q(φ) ma�ers for players’ predicted choices.

In contrast to standard theory, players will make errors in our model. We

de�ne the error rate as the probability that the player draws a φr that does not

indicate the same optimal action as µq, that is, the probability that a∗(µq) 6=
a∗(φr). Consider the example distributions in Figure 1 with µq > 0.5 so that

a∗(µq) = R. �en the error rate is characterized by the probability mass of q(φ)
on all φ < 0.5 and indicated by the shaded areas.

In our model, two characteristics of the belief distribution determine the er-

ror rate. First, as the mean µq approaches 0.5, the error rate εk increases (holding

the shape of the distribution constant). �e closer the belief is to indi�erence,

the more errors are made, due to the shi� of probability mass across the criti-

cal threshold. However, the model also allows for the case that a belief with an

expected-utility di�erence (∆EU , where ∆EU = |µq − 0.5|) close to zero pro-

duces li�le or no errors if the variance of q(φ) approaches zero. �e model there-

fore also provides an intuition for when people will violate �rst-order stochastic
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Figure 1: Two belief distributions with identical means but di�ering vari-

ances. �e shaded areas indicate the respective error rates εL.

dominance (fosd) in their actions. Violations of fosd are one of the greatest chal-

lenges for stochastic-choice models: people o�en violate fosd when dominance

is not obvious (because their belief over which option is be�er is uncertain). On

the other hand, people respect fosd when dominance is obvious (and thus, they

know the best option exactly).

Second, for the error rate εk to increase, it is su�cient that the variance of

q(φ) increases (holding µq constant). Consider again Figure 1. �e shaded ar-

eas are the values of εk for two belief distributions with the same mean (µ1
q =

µ2
q) and hence ∆EU1 = ∆EU2

, but di�erent variances (σ1
q 6= σ2

q ). �e more

variance q(φ) has around its mean, the more likely the agent commits an er-

ror. When drawing from the (blue) high-variance belief, it is more likely that

a∗(φr) 6= a∗(µq) compared to a draw from the (red) low-variance belief.

Stochastic beliefs

�e notion of stochastic choice has consequences also for belief reports. In the

usual experiment, choosing an action and reporting a belief are two separate

decisions with di�erent incentives. �e reported beliefs are usually assumed to

approximate µq and used to explain behavior. �ey are interpreted as the true

12



cause of an action. Following Costa-Gomes and Weizsäcker (2008), we assume

that not only the actions but also the belief reports are stochastic. Instead of

calculating and reporting µq as a belief, the player also reports one draw φr as a

belief. We assume that players use two (three) di�erent and independent draws

from q(φ) for the two (three) tasks of the main (‘mechanism’) experiment.
13

De-

note by φrA the draw used for the action and by φrB the draw for the belief report.

Below, we will discuss the consequences of the combination of stochastic choice

and stochastic belief reports for consistency in the main experiment.

So far, we have introduced the key idea that when making decisions and when

reporting beliefs, agents draw realizations from their inner belief distribution.

We have characterized the error rate and demonstrated that knowing the reduced

belief is not enough to predict the error rate. We now turn to the implications of

the model for observed behavior in experiments.

4.2 Observed belief-action consistency
We assume both choices and belief reports to be stochastic. Hence, the true belief

distribution q(φ) and therefore also the true best-response rate and the true error

rate are unobservable-in-principle in experiments.

For the experimenter to observe consistent behavior, that is, an action that is a

best-response to the reported belief, the two draws from the belief distribution

have to ‘�t together’. A best-response is observed only ifBR(φrA) = BR(φrB). In

our example above, this is the case whenever both φrA, φ
r
B > 0.5 or bothφrA, φ

r
B <

0.5. �e expected observed best-response rate B̂R is directly connected to the

error rate εk de�ned earlier and can be characterized by:

B̂R = Prob
[
BR(φrA) = BR(φrB)

]
= ε2k + (1− εk)2 (2)

A best response is observed if an error occurs in either none or both of the draws

φrA, φ
r
B . To obtain further results, we need to put some structure on the belief

distribution q(φ). We assume φ to be beta-distributed, q(φ;α, β), a very �exible

distribution that is able to approximate many di�erent belief distributions.
14

13
If a single draw were to determine both action and (both) belief(s), we would predict a 100%

best-response rate (and only mutually consistent reports in the ‘mechanism treatment’) which

de�nitely is rejected by the evidence in the literature as well as in our experiment.

14
�e beta-distribution is a prominent example of a probability density function with sup-

port (0,1) and hence suitable to model a distribution over probabilities. With this distributional

assumption, it will be convenient to apply Bayesian-updating, as the beta-distribution is a con-

jugate prior for the Bernoulli and binomial distributions. Hence, updating a (beta-distributed)

prior belief by a number of R- and L-choices in a sample (n i.i.d. Bernoulli variables) will again

yield a beta-distributed posterior. See section 4.3. For the four-option setup, we have a three-

dimensional space. We thus use the beta-distribution’s generalization: the Dirichlet-distribution.

13



proposition 1: If q(φ;α, β) with µq 6= 0.5 is the Beta-distribution

with hyperparametersα, β > 1, the expected observed best-response

rate B̂R decreases in the error rate εk in a symmetric game.

proof:
∂B̂R
∂εk

= 4εk − 2. Hence, B̂R decreases in εk if εk < 0.5. �e

error rate εk is always smaller than 0.5 if the medianmq of the belief

distribution q(φ;α, β) is on the same side of the critical value as the

mean µq (that is, if the median favors the same best response as the

mean BR[mq] = BR[µq]) because then, more than 50% of the prob-

ability mass are contained in (1− εk).

For the symmetric games we consider here, it is hence su�cient

to show that either both or neither the mean and median of q(φ)
are larger than φcrit = 0.5. By the mode-median-mean inequality

(Groeneveld & Meeden, 1977), µq ≤ mq if 1 < β < α. How-

ever, if β < α, also µq = α
α+β

> 0.5. Hence, if 1 < β < α, then

0.5 < µq ≤ mq, and if 1 < α < β, then mq ≤ µq < 0.5. �

Note that proposition 1 also holds if either the action or the belief are as-

sumed to be non-stochastic. In these cases, the expected observed best response

rate is simply B̂R
′
= (1− εk) and obviously

∂B̂R
′

∂εk
< 0.

Having speci�ed how the observed belief-action consistency in experiments

will depend on belief uncertainty, we next look at a possible determinant of belief

uncertainty. A natural source of variation in the belief distribution—and hence

also in belief uncertainty—is the integration of new information into the belief.

To pave the ground for the hypotheses for our experiment, we will explore the

in�uence of information integration on the error rate in the following section.

4.3 Updating based on new information
We assume that agents update their prior belief distribution in a Bayesian way

when they get new information. �is assumption needs some discussion given

that agents may not have access to their belief distribution. To us, the assump-

tion of Bayesian updating is a convenient technical assumption that simply is

a (perhaps overly-)concrete speci�cation of the assumption that agents’ beliefs

will ‘move towards’ the information and not ignore new information altogether.

�is technical assumption makes the model much more tractable. It also makes

the model much more comparable to the standard model because this way, belief

sampling is the only deviation from the standard model (see also Mauersberger,

2019, for a discussion of ‘non-Bayesian decision-makers with Bayesian brains’).

It is le� to future work to generalize the model to a more basic characterization

of updating that is likely to include Bayesian updating as a special case.

14



From now on, let q(φ;α, β) denote the participant’s prior belief distribution.

�e mean of the Beta-distribution and hence the prior mean is µq = α
α+β

. �e

hyperparameter α = nPriorL + 1 can be interpreted as the number of prior ob-

servations of L-choices in a sample of nPrior = nPriorL + nPriorR choices and

β = nPriorR + 1 as the number of prior observations of R-choices.

Suppose the player observes a new sample of n = nL+nR decisions from the

population ofN other players, where nL denotes the number of L-choices in the

sample. Because of conjugacy, the posterior is Beta-distributed as well. Hence

now φ ∼ Beta(α + nL, β + nR). �e posterior’s mean can then be wri�en as:

µp =
α + nL

(α + nL) + (β + nR)
=

α + β

α + β + n︸ ︷︷ ︸
1−w

· α

α + β︸ ︷︷ ︸
µq

+
n

α + β + n︸ ︷︷ ︸
w

· nL
n︸︷︷︸
µs

(3)

�e posterior’s mean is hence a weighted combination of the sample- and the

prior-mean. �e weights are determined by the relative number of observations

in the respective distribution where w denotes the relative weight of the sample.

Further note that limn→∞ µp = µs.

�e posterior’s variance can be expressed as σp = µp(1−µp)
α+β+n+1

. It has two impor-

tant properties. First, as
∂σp
∂n

< 0 the variance decreases ceteris paribus in n, the

number of observations in the sample. Second, the variance is inverse U-shaped

with a maximum at indi�erence, at µp = 0.5. Hence, the variance decreases

ceteris paribus in the distance of the belief mean to indi�erence |µp − 0.5|.

�e error rate of the posterior

As described above, the sample- and prior means as well as their relative weight

determine the location and shape of the posterior belief distribution. In this sec-

tion we derive predictions for the posterior’s error rate εk based on character-

istics of the prior and the observed sample. In the following, we continue to

assume BR(µq) = R for simplicity, but all predictions hold symmetrically for

priors with BR(µq) = L. �e most important characteristic is the location of

µs relative to µq and to the critical threshold, in our case, to 0.5. �ere are three

cases:

I) Congruent sample: �e sample mean is the same or greater than

the prior mean: 0.5 < µq ≤ µs.

i) If 0.5 < µq < µs then εk decreases as the posterior mean is

shi�ed to the right and hence, probability mass is shi�ed away

from 0.5.
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ii) If 0.5 < µq = µs then εk decreases as the posterior variance

decreases.

In both of these subcases, an increase of the relative weight of the

sample w leads to an additional decrease of posterior variance and,

hence, a larger decrease of εk.

II) Sample in between: �e sample mean is less extreme than the

prior but favors the same action: 0.5 < µs < µq. In this case, the

prediction depends on the relative weight.

i) For a su�ciently small relative weight of the sample, εk will in-

crease due to the shi� of the mean towards 0.5 which is stronger

than the minor decrease of variance.

ii) For a su�ciently large relative weight of the sample, εk will de-

crease as the decrease of variance of the posterior will outweigh

the e�ect of the shi� towards 0.5.

III) Incongruent sample: If µs < 0.5 < µq, that means, if the

sample mean is completely di�erent from the prior mean and the two

suggest di�erent best-responses, it is a priori unclear which action

the posterior will favor. �e prediction depends again on the relative

weight:

i) For a su�ciently small relative weight of the sample, εk in-

creases as long as the posterior mean µp is such that µs < 0.5 ≤
µp < µq. �is means, the posterior mean approaches 0.5 from

the right and probability mass is shi�ed to the le�.

ii) If the relative weight is large enough, the prior is ‘overturned’

by the information. �en, µs outweighs µq and µp < 0.5. From

then on, εk decreases in relative weight (from εmaxk = 0.5 at

µp = limε→0 0.5− ε).

Note that in Cases I and II, the posterior will always favor the same action as

the sample because both µq, µs > 0.5. �is also holds for the overturned beliefs

in case III ii). However, if the belief is not overturned, the posterior will favor a

di�erent action than the sample in case III i).

5 Predictions
In this section, we specify the hypotheses for our experiment. We base the hy-

potheses on our model predictions in section 4.3 and on proposition 1 which
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states that the observed best-response rate decreases in the error rate εk. We

derive our hypotheses using the two-option model �rst. We then simulate the

model for the four-option case to show that all predictions continue to hold for

this more complex se�ing. Note also that we have to use proxies for some of

the variables that are relevant in the model, because we cannot observe them

directly by de�nition. In the following paragraphs, we discuss these proxies.

Approximating congruence of prior and sample

Our theory predictions and hypotheses mostly rely on the relationship of the

sample mean µs to i) the sample’s relative weight w and ii) the prior mean µq.
Neither i) nor ii) can be observed in our experiment. First, the particular strength

of participants’ prior beliefs (α + β) is unobservable, so we do not know w.

Second, as the core idea of our theory, participants are not able to report µq, let

alone q(φ). Fortunately, we have suitable proxies we can use.

We proxy the relative weight w = n
α+β+n

by our treatment variable n, the

number of provided observations. �is proxy works well for weak priors and

loses accuracy in the strength of the prior (α + β). It hence could be that a

participant by chance gets a high number of observations whenever her prior is

particularly strong, and a low number of observations when she has only a weak

prior. However, we randomize the treatment n across participants and games.

�erefore, there is no reason to expect that such cases will systematically occur

or dominate our data.

Second, we would like to be able to distinguish Cases I, II ii), and III ii) (more

information leads to less errors) from Cases II i) and III i) (more information

leads to more errors). �e proxy we use essentially separates Case III i) from

all other cases. �is means that our analysis will underestimate the e�ect of

an increase in w on belief-action consistency for observations of the �rst type,

because observations for Case II i) are still ‘in the mix’ with the other non-Case-

III-i) observations.

In particular, we proxy the relationship of the sample to the prior mean µq
by the relationship of the sample to the reported belief φrB . We compare what the

best-response to both entities separately would be. Hence, we compare on which

of the four options the participant places the lowest probability in her reported

belief to where the minimum number of observations is in the sample.

If the reported belief, φrB , has a di�erent minimum than the information and

hence also a di�erent best-response, it is highly likely that the information fa-

vored a di�erent response than the prior mean, µq (Case III i), and was not enough

to ‘overturn’ the (reduced) prior. In particular, if participants were able to report

their true posterior µp, it would have to be that the sample contradicted the par-
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ticipant’s prior.

In contrast to that, if the reported belief has the same minimum as the infor-

mation (that is, BR[φrB] = BR[µs]) it is unlikely that the information di�ered

completely from the reduced prior (Case I & II), unless the information ‘over-

turned’ the prior (Case III ii). We will further discuss the in�uence of ‘overturned

beliefs’ on consistency below when we present our hypotheses.

As a summary, we proxy the relative weight of the information by its num-

ber of observations n. �e relationship between prior- and sample-mean is ap-

proximated by a dummy which compares the reported belief to the information.

Belief-min = Info-min proxies Cases I, II and III ii). Both proxies should work well

on average.

Hypotheses
In situations where the sample information favors the same action as the mean

prior belief, the expected observed best-response rate virtually always increases

in the relative weight (except in Case II i). �e same is true when the di�ering

prior is ‘overturned’. Given there is no reason to believe Case II i) will dominate

in the experiment, we formulate

Hypothesis 1: In cases where participants report beliefs such that

Belief-min = Info-min, the observed best-response rate

increases in the sample size n.

Note that not being able to observe priors poses a second challenge to Hy-

pothesis 1: beliefs that have just been ‘overturned’ o�en enter the category Belief-
min = Info-min but have a high variance, which would speak against our Hypoth-

esis 1. We nevertheless expect Hypothesis 1 to hold because we expect these

cases to be rare enough not to dominate the data, either. In any case, not sep-

arating these cases from Cases I and II goes against our Hypothesis, so that we

should have even more con�dence in the e�ect in case we �nd it.

Case III i) is indicated by Belief-min 6= Info-min. Whenever participants report

a belief with Belief-min 6= Info-min, it is highly likely that the belief was not

overturned by the sample. �is indicates a strong prior. However, because the

provided sample di�ers from the prior, the sample shi�s the posterior towards

the critical threshold. Hence, in these cases belief uncertainty is generally higher,

compared to cases with Belief-min = Info-min.
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Figure 2: Predicted best-response rates in the four-option game according to our simulation.

Hypothesis 2a: In cases where participants report beliefs such that

Belief-min 6= Info-min, the observed best-response rate

is lower on average, compared to situations with Belief-
min = Info-min.

2b: If Belief-min 6= Info-min, the observed best-response rate

decreases in the sample size n.

For Hypothesis 2b, consider cases with Belief-min 6= Info-min and relatively

large sample sizes. In these instances, even the large n was not su�cient to

overturn the prior. We hypothesize that in these cases the belief uncertainty must

be particularly high, because posteriors will be close to the critical threshold. One

could think that we should predict a U-shaped pa�ern for Belief-min 6= Info-min,

because in�nitely many observations should make players be certain in their

beliefs. However, this refers to cases in which n is large enough to overturn

any prior, and thus, the belief-report will be “a rare error” (with respect to the

posterior).

Hypotheses 1, 2a and 2b bear out when we simulate the predictions of our

theory for the four-option game, as depicted in Figure 2. We describe the setup

of the simulation in detail in Appendix A.

6 Results
Our most important results are depicted in the le� panel of Figure 3, where we

use all observations where the belief report has a unique best-response. For
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Linear Regression

Observed best-response rate Coef. p-value

nnormalized -0.154 0.000

Belief-min = Info-min 0.124 0.001

nnorm.×(Belief-min=Info-min) 0.223 0.000

Constant 0.619 0.000

n=40, R2 = 0.809

Spearman’s rank correlations

rs(Observed best-response rate, n) rs p-value

Belief-min = info-min 0.460 0.041

Belief-min 6= info-min -0.661 0.002

Figure 3: Observed best-response rates for each n, depending on the Belief-min–Info-min relation-

ship. nnormalized =
n
360 and n > 0 for the regression analysis and Spearman’s rank order correlation.

Each blue circle (Belief-min = Info-min) on average consists of 27 action–belief-report pairs, and each

red triangle (Belief-min 6= Info-min) of 18 such pairs.

each value of our treatment variable n we compute the observed best-response

rates across all participants, separately for both values of our situation proxy. If

prior and information are not clearly incoherent, the best-response rates are in-

creasing in n (Hypothesis 1) and higher on average compared to situations with

contradictory information (Hypothesis 2a). Additionally, in the case when the

information clearly contradicts the prior, the best-response rate decreases in n
(Hypothesis 2b). �ese results are statistically supported by a linear regression

and Spearman’s rank correlations, reported in the right panel of Figure 3.
15

�e results are in line with the predictions of our model. We interpret the dif-

ferent situations created by the interaction of our Belief-min = Info-min dummy

and our treatment variable n as di�erent levels of belief uncertainty. As pre-

dicted in our model, observed best-response rates decrease in belief uncertainty.

In the following, we present regressions that also account for decision-speci�c

incentives as a robustness check.

20



Best-response to reported belief Average marginal e�ects

Observations = 898, Clusters = 54 Model 1 Model 2 Model 3

nnormalized -0.126** -0.128**

(0.051) (0.050)

Belief-min = Info-min 0.108* 0.108*

(0.057) (0.055)

nnormalized × (Belief-min = Info-min) 0.214** 0.219**

(0.103) (0.103)

‘Strength’ of the reported belief 0.561* 0.576*

(0.309) (0.299)

Period 0.009*** 0.008*** 0.008***

(0.002) (0.002) (0.002)

Male 0.173** 0.167* 0.132*

(0.076) (0.076) (0.073)

Mean Squared Error (Full Sample) 0.1961 0.1869 0.1826

Mean Squared Error (Out of Sample for even Periods) 0.1960 0.1853 0.1814

Table 2: Average marginal e�ects of logit regressions on observed best-responses. Stan-

dard errors in parentheses are clustered on the participant level (54 clusters). �e inter-

action is computed using the inteff so�ware by Norton, Wang & Ai (2004). See also

Ai & Norton (2003). �e marginal e�ect of the interaction is positive for all participants.

Asterisks: *** p < 0.01, ** p < 0.05, * p < 0.1. Additional controls in all models: age,
math-grade, economics-student and a self reported reliability-of-answers measure.

Accounting for error costs and learning

�e results in Figure 3 use aggregate best-response rates across all participants

and hence ignore individual characteristics and incentives. Using regressions

that also account for decision-speci�c incentives, we control for two additional

in�uences on observed best-responses. First, we account for feedback-free learn-

ing over time by controlling for the period in which the decision has been made.

Second, we account for the cost of making an error. In Section 4, we already

pointed to the potential e�ects of (low) error costs on the observed best-response

rate. We account for both factors in the logit regressions whose average marginal

e�ects we report in Table 2.
16

Model 1 tests a model that only includes error costs,

15
In the linear regression, the coe�cient fornnormalized is only weakly signi�cant (p = 0.096,

obtained by reverting the base category to Belief-min = Info-min).

16
�e results are virtually the same when using the linear-probability model reported in Table

B2 in Appendix B.
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while Model 2 only includes belief-uncertainty and no error cost (like in Figure

3). Model 3 tests for both sources of errors jointly. Again, we use all observations

with a unique best-response and n > 0.

Model 1 regresses individual best-responses on individual characteristics and

the ‘strength’ of the belief report φrB . By the strength of the belief we mean the

utility cost of the cheapest decision error, assuming an expected-utility function

(which makes the utility cost linear in the probability of a decision error).
17

�e

strength of a reported belief is thus the percentage-point di�erence in beliefs on

the options with the minimum and the second-lowest probability mass. If the

strength is very low, the participant is almost indi�erent between choosing the

optimal or the second-best option and, according to a model in the spirit of quan-

tal responses, has a high probability of making such an error. �us, consistency

will be low in these situations independent of belief uncertainty. �e results of

Model 1 show that the utility cost of making an error indeed have a large im-

pact on belief-action consistency. High costs of an error strongly increase the

probability of an observed best response.

Model 2 replicates our earlier results with respect to belief-uncertainty which

hence also hold when accounting for decision-speci�c incentives. �e probability

of a best-response decreases in belief uncertainty. Including both sources of error

(the strength of belief and belief uncertainty) in the regression shows that the

e�ect of belief-uncertainty is robust also when controlling for the utility cost

of an error (Model 3). Finally, feedback-free learning over time leads to more

best-responses in later periods in all three models.

To compare all three stochastic-choice speci�cations, we use out-of-sample

predictions. We perform the regressions in Table 2 for all odd periods and predict

the probability of a best response for each decision in all even periods.
18

�e

bo�om panel of Table 2 shows that the out-of-sample mean squared prediction

error decreases from Model 1 to 3. To test the predictive power of the models,

we compute the average squared prediction error of each model for every subject

individually. �e distributions of mean prediction errors di�er between Model 1

and 2 (Wilcoxon signed-rank test, p = 0.043). �is means model 2 outperforms

model 1. Further, Model 3 outperforms both Models 1 and 2 (Model 1 vs 3: p =
0.009, Model 2 vs 3: p = 0.083).

Our results provide evidence that error costs alone cannot explain stochastic

choice and belief-action consistency su�ciently in our data. Models 2 and 3,

where we add our measures for belief uncertainty clearly outperform the pure

17
All results are robust to a non-linear speci�cation replacing the belief’s strength by its

fourth-order polynomial.

18
�e out-of-sample results are robust to predicting the choices of the second half of periods

(13-24) by the the �rst half of periods (1-12). However, models 1 and 2 do not di�er signi�cantly

in that case (Wilcoxon signed-rank test, p = 0.312)
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error-cost Model 1 both in terms of �t to the data and predictive power. Hence,

belief uncertainty plays an important role on top of error costs.

Response times as an alternative measure of utility di�erences

Above, we use the strength of the reported belief as a measure of the utility cost

of an error—hence as a measure for the strength of participants preferences. An

alternative measure for the strength of preferences are response times. �ere is

ample evidence in the literature that response times are closely linked to pref-

erences: longer response times indicate that a person is close(r) to indi�erence

between two options.
19

In this study, the response time also may serve as an

implicit measure of the strength of preference. �is measure might be even less

noisy than the strength of the reported belief because it does not rely on the

participant’s belief report, which, a�er all, is stochastic according to our model.

We hence rerun our regressions, accounting also for response times. �e

regressions are reported in Table B3 in the Appendix. We include the normal

logarithm of the response time (needed to select and con�rm one of the boxes)

as an additional explanatory variable in the set of logit regressions reported in

Table 2. As expected, the extended models show that quicker response times are

associated with higher belief-action consistency. �is e�ect is in line with our

above interpretation, that stronger preferences lead participants to commi�ing

fewer errors, which in turn leads to higher belief-action consistency. �e e�ect of

response times on consistency is robust to adding the belief strength, our orig-

inal measure of the utility cost of making an error. Most importantly, though,

the e�ect of belief uncertainty is robust to adding response times as an alterna-

tive measure for utility di�erences. Higher belief uncertainty still leads to less

belief-action consistency when we include both measures for sources of stochas-

tic choice—belief strength and response times—either separately or jointly. �e

e�ect of belief uncertainty becomes stronger, if at all.

�e last period with full information

In the last period, participants saw the full choice distribution. Hence, (belief)

uncertainty should be absent in this period. However, we still do not observe

100% best-responses. 11 participants (6.7%) even reported a belief with Belief-
min 6= Info-min. We a�ribute these observations to other error sources, such as

Fechner-type errors. It is also conceivable that some participants did not under-

stand that there was no more uncertainty in this period: the data with n = 360

19
Mosteller & Nogee, 1951; Mo�a�, 2005; Chabris et al., 2009; Alós-Ferrer et al., 2012; Dickhaut

et al., 2013; Konovalov & Krajbich, 2017. Alós-Ferrer et al., 2016 even include this fact as a building

block in their economic model to explain preference reversals.

23



lines up perfectly with the rest of the results, as if there was some uncertainty

le�. All our main results hold (especially all regression results), when excluding

the last period with n = 360 from the analysis.

7 Testing the mechanism
Having seen that the belief-sampling model explains our data so nicely, we wanted

to go one step further and look at the model’s mechanism more closely. In the

model, the decision-maker draws a belief from the belief distribution whenever

she needs to act on her belief. In particular, when we ask participants for their

beliefs more than once, the model predicts beliefs to ‘change’ sometimes—the

more o�en the higher the belief uncertainty.

In this section, we set out to test this implication directly. To do so, we con-

ducted two additional sessions with a total of 58 participants. �e design of this

‘mechanism treatment’ was very close to the one in the main experiment. �ere

were two main di�erences: (i) we exposed participants only to the �rst six of

the frames, and gave them either (9, 9, 9, 354, 354, 354) or (354, 354, 354, 9, 9, 9)

observations, respectively, sequences being allocated randomly to participants;

and (ii), a�er participants gave their belief regarding the behavior of their respec-

tive opponent, there would be a pause of 7 seconds. A�er this pause, they read:

“Today, we are interested in whether estimates change over time. �erefore, we

would like to ask you once again to tell us your (current) estimate of the proba-

bilities with which the participant of the previous experiment randomly allo�ed

to you has chosen the individual boxes of the current arrangement.”

�e six rounds were the �rst part of an experiment that consisted of three

independent parts; the content of parts 2 and 3 was not known to the participants

at this stage. One of the parts was selected randomly for payment at the end. If

part 1 was to be selected, we would pay one out of the six rounds according to

their action, one according to their �rst-stated belief, and one according to their

second-stated belief. To prevent hedging, we made sure that the three rounds

selected for payment would all be di�erent and that participants knew this.

To test the mechanism of our model, we set up the following hypotheses that

come straight out of the model:

Hypothesis M.1: Participants will state di�erent beliefs for the same situ-

ation at least some of the time.

Similar to our main hypotheses in Section 5, the degree of belief uncertainty

determines the degree of consistency of the two belief reports. High belief uncer-

tainty will lead to a higher probability of stating di�erent beliefs than low belief

uncertainty:
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Number of consistent belief statements 0 1 2 3 4 5 6

Number of participants 2 3 11 14 13 10 5

Table 3: Numbers of participants for whom the �rst-stated and the second-

stated beliefs have their minima at the same options.

Hypothesis M.2: If participants’ �rst-stated belief is congruent with the

information they receive, their second-stated belief will

di�er less o�en if they receive a high number of obser-

vations compared to when they receive only few obser-

vations. If participants’ �rst-stated belief is incongruent

with the information they receive, their second-stated

belief will di�er more o�en if they receive a high num-

ber of observations.

Finally, having displayed consistent behavior in the action choice and the �rst

belief report is a proxy for a narrow belief distribution. �us, we posit:

Hypothesis M.3: �e belief of participants who choose a best-response to

their �rst-stated belief is less likely to change than the

belief of participants who do not best-respond to their

�rst-stated belief.

Note that we deliberately formulated the question for their second belief estimate

in an open way (“we are interested in whether estimates change over time.”) to

avoid a demand e�ect. Still, we cannot exclude for sure that our assessment of

Hypothesis M.1 is in�uenced by such an e�ect. However, there is no reason for

why this e�ect should give rise to the pa�ern spelt out in Hypotheses M.2 and

M.3.

To test Hypothesis M.1, we ask for each participant how o�en the minima

of the �rst-stated and the second-stated beliefs coincide. Table 3 shows that 43

out of 58 participants (74%) state inconsistent beliefs at least twice, and 30 out

of 58 participants (52%) state inconsistent beliefs at least half of the time. �ese

numbers clearly support Hypothesis M.1.

To test Hypotheses M.2 and M.3, we run the regressions reported in Table

4. Model 1 clearly shows that if the �rst-stated belief and the information are

incongruent (baseline category), receiving a lot of information (n = 354) leads

to less second-stated beliefs that are consistent with the �rst-stated belief; again,

this reverses for �rst-stated beliefs that are congruent with the information (the
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Expected probability of consistent beliefs Model 1 Model 2

(Intercept) 0.603 (0.061)∗∗∗ 0.506 (0.066)∗∗∗

(n = 354) −0.175 (0.091)∗ −0.165 (0.089)∗

Belief-min = Info-min 0.072 (0.081) 0.058 (0.080)

(n = 354)×(Belief-min = Info-min) 0.257 (0.115)∗∗ 0.236 (0.113)∗∗

Action is a best-response 0.195 (0.055)∗∗∗

Log Likelihood -192.115 -187.984

Num. obs. 283 283

Table 4: Linear-probability mixed-e�ects models on whether the �rst-stated belief

will have the minimum (“Belief-min”) at the same option as the second-stated be-

lief, with random e�ects for participants; standard errors in parentheses. Asterisks:

∗∗∗p < 0.01,
∗∗p < 0.05,

∗p < 0.1.

sum of the coe�cients for {n = 354} and for {n = 354}×Belief-min = Info-min
is positive). We therefore �nd support also for Hypothesis M.2.

Model 2 tests for the di�erence between cases where the �rst-stated belief

and the chosen action were inconsistent (which proxies belief uncertainty) and

cases where they were consistent (li�le belief uncertainty). Clearly, belief-action

consistency predicts whether beliefs change (while the coe�cients relating to

Hypothesis M.2 are largely una�ected). Hence, the data o�er support also for

Hypothesis M.3.

8 Conclusion
In many cases, people’s behavior converges to a Nash equilibrium only a�er suf-

�cient experience.
20

In this paper, we point out that experience with a situation

may ma�er not only for whether people play equilibrium strategies—it ma�ers

also for whether they act optimally given their (unobserved) beliefs. In this light,

the common �nding of relatively low rates of (observed) belief-action consis-

tency in the literature is not that surprising anymore.

In particular in early rounds of experimental setups, as well as when there is

no feedback between rounds, participants are inexperienced and may ‘not really

know what to believe’ about other people’s choices.
21

�is is exactly the type

20E.g., Fudenberg & Levine (2016), and references cited therein.

21
�is corresponds to the results reported in Hyndman et al. (2012): in 14 out of 15 treatments

(both own and others), observed best-response rates increase over the time of the experiment.
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of situation in which a belief-sampling model predicts a high variance in both

stated beliefs and chosen actions—which automatically leads to comparatively

low observed best-response rates.

In this paper, we look at belief-action consistency through the lense of a

belief-sampling model and run an experiment that manipulates participants’ be-

lief uncertainty in a game-like situation. We �nd support for our main hypothe-

ses. In particular, more information about another person’s likely behaviour in-

creases the consistency between participants’ actions and their reported beliefs,

provided that the new information does not ‘contradict strongly’ the partici-

pant’s prior. At the same time, belief-action consistency decreases in the amount

of information whenever the new information clearly contradicts the partici-

pant’s prior.

We then go on to test the mechanism in a ‘mechanism treatment’ in which we

ask for beliefs twice, with a seven-seconds pause in between. �e model predicts

that participants should report inconsistent beliefs more frequently the higher

their belief uncertainty. We observe that participants frequently change their

reports between measurements even though we rely on a robust measurement:

beliefs are counted as ‘inconsistent’ only when they prescribe di�erent actions.

Moreover, participants exhibit inconsistent reports exactly when the model pre-

dicts them to do so: the higher the belief uncertainty, the less consistent the

reports.

Given the predictive success of the belief-sampling model, the next step might

indeed be to generalize the model into a game-theoretic model. �e current

working paper of Mauersberger (2019) takes a step in this direction. In this con-

text, we �ll the empirical gap between the existing research in the exploration-

exploitation literature and the aggregate behaviour at Mauersberger’s focus.
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Appendix (for online publication only)

A Simulating the four-option game
To make clear that our predictions for the four-option game do indeed result from

our theory, we run a simulation. First, we randomly choose an absolute weight

nq for our prior, with nq ∼ U [1, 400]. nq can be interpreted as the number of

observations in a prior sample. We choose an upper limit of 400 so that there can

be priors that outweigh the maximum sample size of 360 used in our experiment.

Our prior should be Dirichlet-(α) distributed (cf. �n. �). So, we randomly draw

four probabilities π
(q)
i for the αs of the prior distribution. We use a Dirichlet-

(1, 1, 1, 1) distribution for this random draw. �en, we use the randomly-drawn

probabilities together with the drawn nq, to determine the parameters of the

prior Dirichlet distribution: α
(q)
i = nqπ

(q)
i + 1.

A�er randomly de�ning the prior, we create an “observed sample” of choices.

We draw the number of new observations n from a uniform distribution over all

levels we use in the experiment but the extreme cases, so thatn ∼ U{9, 12, 15, 18,
36, 64, 92, 120, 148, 176, 204, 232, 260, 288, 316, 345, 348, 351, 354}. �en, we

randomly determine ‘choice probabilities’ for the random samples. For this pur-

pose, we draw three values π
(aux)
i , π

(aux)
i ∼ U [0, 1]. We then let sampling prob-

abilities be a random perturbation of the following sequence of probabilities:

π
(s)
1 = π

(aux)
1 , π

(s)
2 = (1 − π

(s)
1 )π

(aux)
2 , π

(s)
3 = (1 − π

(s)
1 − π

(s)
2 )π

(aux)
3 , and

π
(s)
4 = (1 − π

(s)
1 − π

(s)
2 − π

(s)
3 ). Using the random perturbation of our proba-

bilities π
(s)
i , we draw a sample of n new ‘observations’. We then apply Bayesian

updating to update the prior Dirichlet distribution according to the ‘new obser-

vations’, so that α
(p)
i = α

(q)
i + ni.

So far, we have simulated a prior belief-distribution with absolute weight nq
and an observed sample of n choices. Using Bayes’ rule, we have updated the

prior to arrive at a posterior belief distribution. To assess the predicted observed

best-response rate for the resulting posterior, we use 10’000 iterations of the fol-

lowing process: from the posterior, we draw a belief φrA for the action and a belief

φrB for the reported belief, with φrA, φ
r
B ∼ Dir(α(p)). If the two beliefs have their

minimum on the same option, they are consistent. For each draw of φrB , we also

record whether it has the same minimum as the distribution of ‘new observa-

tions’ n. �en, we record the average consistency for all draws of φrB that have

the minimum on the ‘anti-mode’ of n. Further, we compute the average consis-

tency for all draws of φrB that do not have the minimum on the ‘anti-mode’ of n
(where we de�ne the anti-mode to be the location that occurs least o�en in the

sample). We thus compute best-response rates separately for when the reported

belief indicates the same best-response as the observed sample and when it has

30



not.

We iterate the above process 5’000 times. �en, we use a linear regression to

relate the level of consistency to the sample size n, a dummy indicating whether

the drawn belief φrB has its minimum on the anti-mode of the sample n, and the

interaction of both terms. We plot the resulting predicted best-response rates

in Figure 2 in Section 5. �is prediction has three characteristics: when the re-

ported belief and the sample suggest the same choice, (i) the best-response rate

is higher than when they do not; (ii) the predicted best-response rate increases

in n; and (iii) when the reported belief and the sample suggest di�erent choices,

the predicted best-response rate decreases in n.
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Game Box 1 Box 2 Box 3 Box 4 χ2
Sig. on 5% Sig. on 1%

1 74 106 110 70 14.578 X X

2 110 68 76 106 14.844 X X

3 84 70 86 120 15.022 X X

4 110 100 70 80 11.111 X -

5 104 84 101 71 7.933 X -

6 76 77 97 110 9.044 X -

7 115 63 84 98 16.156 X X

8 83 90 87 100 1.7556 - -

9 123 74 75 88 17.489 X X

10 104 83 92 81 3.667 - -

11 97 77 81 105 5.822 - -

12 101 82 88 89 2.111 - -

13 86 76 80 118 12.178 X X

14 116 92 72 80 12.267 X X

15 76 104 89 91 4.378 - -

16 91 66 102 101 9.356 X -

17 113 70 90 87 10.422 X -

18 85 95 61 119 19.244 X X

19 100 76 71 113 13.178 X X

20 93 87 75 105 5.200 - -

21 97 84 86 93 1.222 - -

22 92 71 93 104 6.333 - -

23 102 75 101 82 6.156 - -

24 104 67 76 113 16.111 X X

Number of signi�cantly non-uniform distributions: 15 10

Table B1: �e 24 historic choice distributions, used to sample the provided in-

formation. Corresponding χ2
-tests with H0: choices are uniform across boxes
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As     2     3       Joker 
 

As 2 3 Joker 

As     2     3       Joker 
 

As 2 3 Joker 

As     2     3       Joker 
 

As 2 3 Joker 

As     2     3       Joker 
 

As 2 3 Joker 

1

Figure B1: �e 24 label sets, used to label the four options of the games. One set for

each game.
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Best-response to belief Linear Probability Model

Model 1 Model 2 Model 3

nnormalized -0.158** -0.160**

(0.068) (0.066)

Belief-min = Info-min 0.117* 0.117*

(0.063) (0.061)

nnormalized × (Belief-min = Info-min) 0.212** 0.217**

(0.102) (0.100)

’Strength’ of the reported belief 0.511** 0.534**

(0.223) (0.222)

Period 0.009*** 0.008*** 0.008***

(0.002) (0.002) (0.002)

Male 0.169** 0.157** 0.128*

(0.069) (0.069) (0.066)

Table B2: Linear Probability Model OLS regressions of observed best-responses.

Standard errors in parentheses are clustered on the participant level (54 clusters). As-

terisks: *** p<0.01, ** p<0.05, * p<0.1. Additional controls in all models: age, math-
grade, economics-student and a self-reported reliability-of-answers measure.
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Best Response to belief Average Marginal e�ects a�er Logit

Model 1′ Model 1′′ Model 2′ Model 3′

ln(decision time) -0.123*** -0.114*** -0.099*** -0.090***

(0.033) (0.034) (0.033) (0.034)

nnormalized -0.124** -0.128**

(0.051) (0.050)

Belief-min = Info-min 0.095* 0.094*

(0.054) (0.053)

nnormalized×(Belief-min = Info-min) 0.211** 0.217**

(0.103) (0.102)

’Strength’ of the reported belief 0.490 0.516*

(0.300) (0.299)

Period 0.006*** 0.007*** 0.006*** 0.006***

(0.002) (0.002) (0.002) (0.002)

Male 0.181** 0.155** 0.149** 0.121*

(0.077) (0.075) (0.073) (0.072)

Mean Squared Error 0.1944 0.1914 0.1834 0.1799

Table B3: Marginal e�ects of Logit regressions accounting for ln(decision time).

Number of Observations = 898. Standard errors in parentheses are clustered on the

participant level (54 clusters). Asterisks: *** p<0.01, ** p<0.05, * p<0.1. Additional con-

trols in all models: age, math-grade, economics-student and a self-reported reliability-
of-answers measure.
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C Experimental Instructions
�e instructions are translated from german. Boxes indicate consecutive screens showed to par-

ticipants.

Today’s Experiment
Today’s experiment consists of 24 rounds in which you will make two deci-

sions each.

Decision 1 and Decision 2

In the �rst round, you will see the instructions for both decisions directly

before the decision. In later rounds, you can display the instructions again if

you need to.

�e payment of the experiment
In every decision you can earn points. At the end of the experiment, 2 rounds

are randomly drawn and payed. In one of the rounds, we pay the point you

earned from decision 1 and in the other round, you earn the points from de-

cision 2. �e total amount of points you earned will be converted to EURO

with the following exchange rate:

1 Point = 1 Euro

A�er the experiment is completed, there will be a short questionnaire. For

completion of the questionnaire, you additionally receive 5 Euro. You will

receive your payment at the end of the experiment in cash and privacy. No

other participant will know how much money you earned.
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General Instructions
For todays experiment, another experiment plays a central role. �is experi-

ment has been conducted earlier, here in the LakeLab. �e earlier experiment

is describet in the following.

�e earlier experiment

In the earlier experiment, 360 participants ran through 24 rounds. In every

round groups of two randomly matched persons were formed. �e group

members did not know each others identity and could not communicate

throughout the whole experiment.

One round of the experiment worked in the following way: both participants

did see the exact same screen. On the screen, there was an arrangement of

four boxes which are marked with symbols. Both of the group members chose

one of the boxes. If both group members chose di�erent boxes, both received

a price. If both members chose the same box, there was no payo�. All partic-

ipants learn about which box was chosen by the other participant and which

payo� they received in a certain round only at the end of the experiment.

�e arrangement of symbols on the boxes di�ered in every round for every

group. �e decision of a participant was hence on an unknown arrangement.

Below, you can see an example of how such an arrangement could have

looked like.

Example: �e four boxes are marked from le� to right by Diamond, Heart,

Spade, Diamond.

♦ ♥ ♣ ♦

In this example, there are two boxes which are marked with the same symbol.

However, the boxes on the most le� and most right count as are di�erent

boxes.
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Instructions for experiment 1
�e number of points you receive in decision 1 depends on your own

decision, as well as on a participant of the earlier experiment who will

be randomly matched with you. How this works, will be explained in the

following.

Decision 1

For decision 1 in every round, you see an arrangement of four boxes which

are marked with symbols that was also used in the earlier experiment.

�e computer then randomly draws one of the participants of the earlier

experiment who chose one of the boxes.

In decision 1, you have to choose a box as well.

If you choose another box than your randomly matched partner
from the earlier experiment, you receive 7 points. If you choose the
same box as your randomlymatched partner, you don’t receive points.

On the next screen, you receive more information about the earlier experi-

ment.

Additional Information
In every round, before you make decision 1, you receive additional informa-

tion, how a certain sample of the 360 participants of the earlier experiment

decided in the respective arrangement. In every round, a random sample is

drawn from all 360 participants of the earlier experiment. For every of the

four boxes, you get to know how many participants in the sample chose that

box. You can see an example of how this information looks like below:

[Example Screen, see screenshot below]

Please note, that the participant you are matched to in the respective
period is not contained in the sample you see. �is means, that this
participant is always drawn from the remaining participants which
are not shown to you.
�e size of the respective sample of participants you receive information

about will vary from round to round. �is means, that you have di�erent

amounts of information about the decisions of the participants of the earlier

experiment in every round.

Please note, that the participants of the earlier experiment did not
have any information how other participants decided. Information
like you can see it above, was not displayed to the participants of the
earlier experiment.
�e information is displayed on the next screen.
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Figure C1: Example screen of the presentation of choice frequencies.
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Instructions for decision 2
In decision 2, your payo� also depends on your own decision and on the

decision of your matching partner from the earlier experiment. We now

explain decision 2 in detail.

Decision 2
Decision 2 refers always to the arrangement from decision 1, which was also

used in the earlier experiment. You will hence see the arrangement of boxes

from the respective round again. You also can look at the additional infor-

mation again. Again, the decision of your matching partner from the earlier

experiment is relevant for you.

Decision 2 is about your assessment, how your matching partner from the

earlier experiment decided. We are interests in your assessment of the

following question:

“With what probability did your matching partner chose each of the
respective boxes of the current set-up?”

For every box, you can report your assessment with what probability your

matching partner chose the respective box. You can enter the percentage

numbers in a bar diagram. By clicking into the diagram, you can adjust the

height of the bars. You can adjust as many times as you like, until you con�rm.

Since your assessments are percentage numbers, the bars have to add up to

100%. �e sum of your assessment is displayed on the right. You can adjust

this value to 100% by clicking. Or you enter the relative sizes of your as-

sessments only roughly and then press the “scale” bu�on. Please note, that

because of rounding, the displayed sum ma deviate from 100% in some cases.

On the next page, we explain the payo� of decision 2.
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�e payo� in decision 2
In this decision, you can either earn 0 or 7 points. Your chance of earning 7

points increases with the precision of your assessment. Your assessment is

more precise, the more it is in line with the decision behavior of your match-

ing partner. For example, if you reported a high assessment on the actually

selected box, your chance increases. If your assessment on the selected box

was low, your chance decreases.

You may now look at a detailed explanation of the computation of your

payment, which rewards the precision of your assessment.

It is important for you to know, that the chance of receiving a high
payo� is maximal in expectation, if you assess the behavior of your
matching partner correctly. It is our intention, that you have an
incentive to think carefully about the behavior of your matching
partner. We want, that you are rewarded if you have assessed the
behavior well and made a respective report.

At the end of the experiment, one participant of today’s experiment will roll a

number between 1 and 100 with dies. If the rolled number is smaller or equal

to your chance, you receive 7 points. If the number is larger than your chance,

you receive 0 points.

As soon as you reported and con�rmed your assessment about the behavior

of your matching partner, the round ends. You will then be matched with

another participants and the next round begins.
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Payment of the assessments
At the end of your assessment, you will receive the 7 points with a certain

chance (p) and with (1 − p), you receive 3 points. You can in�uence your

chance p with your assessment in the following way:

As described above, you will report an assessment for each box, on how

likely your matching partner is to select that box. One of boxes is the actually

selected. At the end, your assessments are compared to the actual decision

of your matching partner. Your deviation is computed in percent.

Your chance p is initially set to 1 (hence 100%). However, there will be

deductions, if your assessments are wrong. �e deductions in percent are

�rst squared and then divided by two.

For example, if you place 50% on a speci�c box, but [your matching partner

selects another box,] your deviation is equal to 50%. Hence, we deduct

0.50 ∗ 0.50 ∗ 1
2 = 0.125 ( 12.5%) from p.

[For the box, which is actually selected by your matching partner, it is bad if

your assessment is far away from 100%. Again, your deviation from that is

squared, halved and deducted. For example if you only place 60% probability

on the actually selected box, we will deduct 0.40∗0.40∗ 12 = 0.08 (8%) from p.]

With this procedure, we compute your deviations and deductions for all

boxes.

At the end, all deductions are summed up and the smaller the sum of squared

deviations is, the be�er was your assessment. For those who are inter-

ested, we show the mathematical formula according to which we compute

the chance.

p = 1− 1
2

[∑
i(qboxi,estimate − qboxi,true)

2
]

�e value of p of your assessment will be computed and displayed to you at

the end of the experiment. �e higher p is, the be�er your assessment was

and the higher your chance to receive 7 points (instead of 0) in this part. At

the end of the experiment, the computer will roll a random number between

0 and 100 with dies. If this number is smaller or equal to p, you receive 7

points. If the number is larger than p you receive 0 points.

Summary
In order to have a high chance to receive the large payment, it is your
aim to achieve as few deductions from p as possible. �is works best, if
you have an good assessment of the behavior of your matching part-
ner and report that assessment truthfully.
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