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Abstract

We investigate the small sample properties of two types of weak exogeneity tests in coin-

tegrated VAR models that are frequently used in applied work. The first one is the standard

Likelihood Ratio (LR) test in the Johansen framework. The second test is based on mapping

the cointegrated VAR model into VECM representation and then reducing the model using

some model selection procedure before testing the significance of the α parameters. Results

from Monte Carlo experiments indicate severe size distortions in both test types in small sam-

ples. We suggest a bootstrap version of the LR test, which can be used for size correction.
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1 Introduction

Cointegrated vector autoregressive (VAR) models have become a standard modeling tool in ap-

plied econometric time series analysis during the last decade. Modeling multivariate cointegrated

time series usually includes a number of model specification steps like, for instance, choosing the

information set, selecting the lag length and the determination of the cointegration properties. Fi-

nally, modeling the short run adjustment structure, i.e. the feedbacks to deviations from the long

run relations, is an important step, because it can reveal information on the underlying economic

structure. Modeling the feedback mechanisms in cointegrated VAR models is typically done by

testing the significance of the feedback or loading coefficients. These significance tests are often

called weak exogeneity tests, because certain sets of zero restrictions imply long run weak exo-

geneity with respect to the cointegrating parameters. The concept of weak exogeneity was defined

by Engle, Hendry & Richard (1983) and is closely related to testing the feedback coefficients. If all

but one variable in a system are weakly exogenous than efficient inference about the cointegration

parameters can be conducted in a single equation framework.

Some authors use tests on the feedback coefficients as ‘a form for data exploration rather than

as specification testing in the strict sense’ (Johansen & Juselius (1990, p. 202)), because they have

no strong a priori hypotheses on the feedback coefficients (see e.g. Juselius (2001), Marcellino

& Mizon (2001)). They highlight the economic interpretation and impose zero restrictions on the

feedback coefficients to learn more about the adjustment mechanisms in the underlying system.

Choosing valid (weak exogeneity) restrictions is of major importance, because policy implications

are sometimes based on the short run adjustment structure (see e.g. Juselius (2001)). In this paper

we concentrate on two alternative strategies to test for long run weak exogeneity that have been

frequently used in the literature. The first is a Likelihood Ratio (LR) test proposed by Johansen

(see Johansen & Juselius (1990), Johansen (1995)) and is implemented in popular software pack-

ages such as PcFiml by Doornik & Hendry (1997). Numerous studies used the LR test, see inter

alia Juselius (1995), Juselius (1996), Marcellino & Mizon (2001). The second strategy involves

first mapping the cointegrated VAR into a vector error correction model (VECM) representation,

reducing the parameter space by imposing additional zero restrictions on the short run dynamics

and finally testing the significance of the feedback coefficients using a t- or F -test. The basic idea

of this strategy is to increase the precision of the important tests on α by reducing the number of

estimated parameters first. Because it involves imposing subset restrictions on the VECM in a first

step, we call this procedure a Subset test. Similar modeling strategies have been used inter alia by

Johansen & Juselius (1994), Hendry (1995, Chapter 16), Mizon (1995), Urbain (1995), Juselius

(2001) and Lütkepohl & Wolters (1998, 2001).

In this paper we investigate the properties of the LR and the Subset test to see whether a partic-

ular strategy has a clear advantage over the other. To do so, we conduct a number of Monte Carlo

experiments using both, data based and artificial DGPs, which we think mimic typical situations

in applied macroeconometric time series analysis.
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The paper is structured as follows: Section 2 describes the modeling framework as well as the

tests considered and points out the main differences between them. Section 3 describes the Monte

Carlo experiments and presents the main results, before concluding remarks are given in Section

4.

2 Weak Exogeneity Tests

The general modeling framework is a VAR(p) model of form

yt = A1yt−1 + · · · + Apyt−p + ΞDt + ut, (2.1)

where yt is a K × 1 vector of time series, Dt a vector of deterministic terms, and A1, . . . , Ap

are K × K coefficient matrices. Ξ is the coefficient matrix associated with deterministic terms,

such as a constant, trend and seasonal dummies. The disturbance ut is a normally distributed

K× 1 unobservable zero mean white noise process with covariance matrix Σu. If the variables are

cointegrated the VAR(p) model (2.1) has a vector error correction representation

∆yt = Πyt−1 + Γ1∆yt−1 + · · · + Γp−1∆yt−p+1 + ΞDt + ut, (2.2)

denoted as VECM(p), which is obtained by subtracting yt−1 from both sides of (2.1) and rear-

ranging terms (see e.g. Lütkepohl (2001) for details). In cointegrated models Π has reduced rank

r = rk(Π) < K and can be decomposed as Π = αβ ′, where α and β are K×r matrices containing

the loading (or feedback) coefficients and the cointegration vectors, respectively. Before the LR

test for weak exogeneity is applied, researchers typically impose identifying assumptions on the

cointegrating vectors β. Then testing for weak exogeneity means testing zero restrictions on the α

matrix. We start by describing a LR test for general restrictions on α and β .

2.1 The Likelihood Ratio Test

Within the VECM (2.2) researchers are often interested in testing general restrictions on β and α.

Boswijk (1995) suggested to express general restrictions on β as

vec β = Hφ + h, (2.3)

where H is a known Kr × n matrix, φ is a n× 1 vector containing the free parameters and h is a

known Kr×1 vector corresponding to normalizing restrictions on β. Linear exclusion restrictions

on α can be written as

vec α′ = Gγ (2.4)

where G is a known Kr × s matrix and γ is a s × 1 vector containing the free adjustment pa-

rameters. Using this notation, fairly general restrictions can be captured, however, estimating the
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model under these general restrictions requires an iterative procedure. Boswijk (1995) shows that

Maximum Likelihood (ML) estimators for φ, γ and Σu can be obtained by iterating on

φ̂ = [H ′(α′Σ−1
u α⊗ S11)H ]−1 × (H ′(α′Σ−1

u ⊗ IK)vec S10 −H ′(α′Σ−1
u α⊗ S11)h)

γ̂ =
[
G′(Σ−1

u ⊗ β ′S11β)G
]−1

G′(Σ−1
u ⊗ β ′)vec S10

Σ̂u = S00 − αβ ′S10 − S01βα
′ + αβ ′S11βα

′

using suitable starting values. Sij are the moment matrices from the reduced rank regression

suggested by Johansen (1995). Once the restricted model has been estimated, a corresponding LR

statistic can be calculated as

LR = T (ln |Σ̂r
u| − ln |Σ̂u|), (2.5)

where Σ̂u (Σ̂r
u) is the estimated covariance matrix without (with) the imposed restriction. LR

is asymptotically χ2(df) distributed with df being the degree of overidentification. Alternative

algorithms to estimate a cointegrated VAR model under general restrictions on the cointegration

space have been suggested by Doornik & Hendry (1997, Chapter 11).

Alternatively, if only hypotheses on α are of interest, a LR test statistic can be easily computed

without using an iterative procedure. In fact, simple hypotheses on the feedback coefficients can

also be expressed as

α = Gγ (2.6)

where γ is a s× r matrix of free parameters and G is a known K× s matrix of ones and zeros. For

example, if we have a four dimensional system (K = 4) with one cointegrating relation (r = 1)

and wish to test whether the error correction term enters the second equation, i.e. we test weak

exogeneity of the second variable, the null hypotheses can be written as

α =



α1

0

α3

α4


 =




1 0 0

0 0 0

0 1 0

0 0 1




γ1

γ2

γ3


 . (2.7)

Since we only impose restrictions on α, hypotheses like (2.6) can be tested by solving a modified

eigenvalue problem as described by Johansen (1995, Chapter 8). The corresponding LR statistic is

computed as

LR = T
r∑

i=1

ln[(1 − λ̃i)/(1 − λ̂i)] (2.8)
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where λ̂i (λ̃i) are the eigenvalues calculated without (with) the restriction. LR is again asymp-

totically χ2(df) distributed where df denotes the degree of overidentification. Note that testing

hypotheses like (2.6) is only of interest if r = 1, because only then no additional identifying re-

strictions on β are needed. Therefore, in the Monte Carlo simulations presented in Section 3 we

consider simple restrictions of type (2.6) in systems where r = 1, and more general restrictions

(2.3) and (2.4) if r > 1.

2.2 The Subset Test

Suppose the researcher has imposed (over-)identifying restrictions on the cointegrating vectors β

to give the long run relations an economic interpretation. In order to have a more parsimonious

description of the data, he may want to impose additional restrictions. To achieve this, he typically

maps the model into VECM representation by fixing β and computing the error correction term

ect = β ′yt, so (2.2) becomes

∆yt = αect−1 + Γ1∆yt−1 + · · · + Γp−1∆yt−p+1 + ΞDt + ut, (2.9)

and uses some model selection algorithm to delete variables from the model. Typically, one selects

zero restrictions on Γ := (Γ1 : · · · : Γp−1) first and finally decides on the significance of the

α parameters. As already pointed out in the introduction, the intuition for this procedure is to

reduce the number of parameters first and thereby increasing the precision of the important tests

on α. Because it involves imposing subset restrictions on the VECM in a first step, we call this

procedure a Subset test. By writing the model in VECM form, all variables are in I(0) space and

conventional t- or F -tests can be used to conduct the weak exogeneity test. The implementation

of the this ‘test’ differs across studies, because of different model selection methods. In fact, a

number of procedures to delete variables from a system have been proposed in the literature. For

example, Hendry (1995) suggested the general-to-specific (Gets) methodology that is based on

a sequence of t-tests and a number of misspecification tests to ensure an adequate final model.

The method is frequently used in empirical modeling. More recently, Krolzig & Hendry (2001)

have implemented the Gets method into an automated computer algorithm (PcGets) and Krolzig

(2001) has shown the usefulness for reducing VAR models. Alternative methods typically include

procedures that are based on information criteria (see e.g. Lütkepohl (1991, Chapter 5)). For the

VAR framework Brüggemann & Lütkepohl (2001) compare different subset modeling methods

and find that system based procedures are not superior to methods based on the single equations.

Therefore, here we use a single equation strategy that amounts to sequentially deleting variables

with lowest absolute t-ratios until all are greater than some threshold value τ . More formally, we

can write the k-th equation of (2.9) as

∆ykt = αkect−1 + x1tϑ1 + · · · + xMtϑM + ukt, t = 1, . . . , T (2.10)

where αk is the k-th row of α and xmt (m = 1, . . . ,M) denotes all other regressors in that

equation. Let t(j)m denote the t-ratio from an OLS estimation associated with ϑm in the j-th step of

4



the procedure. In reduction step j we delete xmt if

|t(j)m | = min
i=1,...,M−j+1

|t(j)i | and |t(j)m | ≤ τ.

The algorithm stops if all |t(j)m | > τ . The critical value

τ = τj = {[exp(cT/T ) − 1](T −M + j − 1)}1/2 (2.11)

is a function of the sample size T , the number of initial regressors M and the reduction step j. τ

also depends on cT , which varies with the choice of a typical information criterion (AIC: cT = 2,

HQ: cT = 2 log logT and SC: cT = log T ). The critical value in this testing procedure (TP) for

each test is chosen according to (2.11) to insure that a related procedure based on a sequential

elimination of regressors (SER) using information criteria leads to the same final model. There-

fore, we refer to this strategy as SER/TP in the following. Krolzig (2001) compares the PcGets and

SER/TP algorithm and finds that PcGets has slightly better size properties. However, the compar-

ison is based on one specific DGP and clearly a more systematic comparison is necessary. Results

available so far indicate no major advantage for the more sophisticated PcGets algorithm.

In the Monte Carlo simulations of the Subset test, we use SER/TP together with AIC to impose

zero restrictions on Γ, because this strategy has performed relatively well in the comparison of

Brüggemann & Lütkepohl (2001). The steps necessary in the Subset test can be summarized as

follows:

• map cointegrated VAR to VECM representation (2.9)

• use SER/TP to impose zero restrictions on Γ (exclude α’s from search)

• test (weak exogeneity) hypotheses on α using t- or F -tests

2.3 Small Sample Correction and Bootstrap Tests

In this paper we are mainly concerned with the test performance in finite sample situations faced

by applied econometricians. The distribution of the LR test is only an asymptotic one and may

be quite misleading. In fact, in some studies concerned with testing linear restrictions on cointe-

grating vectors the LR test has severe size distortions (see e.g. Gredenhoff & Jacobson (2001) and

references therein). A similar problem may be present when testing hypotheses on α, as pointed

out by Podivinsky (1992). Therefore, it may be useful to consider some kind of small sample

adjustment. For the LR tests we use two small sample modifications. The first method is a simple

degrees of freedom correction as suggested by Sims (1980, p. 17)

LRM = (T − k)LR/T → χ2(df), (2.12)

where k is a correction for the degrees of freedom as discussed below. LRM has the same asymp-

totic distribution as LR, but is less likely to reject in small samples. Moreover, we know from
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standard linear regression models that the F -version of the LR test is better behaved in small

samples. Therefore, we also consider

F = LR/df ≈ F (df, T − k), (2.13)

where k again is some degrees of freedom correction. (2.13) is approximately F distributed (see

Lütkepohl (1991, p. 123)). Choosing k is crucial because it affects the test statistic or the degrees

of freedom and hence the test decision. A number of proposals have been made in the literature.

Typically, k is the approximate number of estimated parameters in the system (2.2) or the number

of estimated parameters in one equation of the system. Podivinsky (1992) suggested to choose k

equal to the total number of parameters in Π and Γ of (2.2). This correction worked well in the

specific example used in his simulation. However, if K and p get large relative to the sample size

T , one ends up with negative degrees of freedom. We therefore choose k such that it equals the

approximate number of estimated coefficients in one equation of (2.2), as suggested by Lütkepohl

(1991, p. 123) in the VAR context. More precisely, we let

k = r + Kr + K(p− 1) + 1 (2.14)

where the first right hand side term gives the number of α parameters per equation, the second the

number of β parameters, and the last two the number of parameters in Γ and Ξ in one equation

of the system.1 One might argue, that the value of k is too large because it actually includes

the number of β parameters (Kr) of the whole system. On the other hand, choosing k too small

reduces the effect of the correction. Using (2.14) we also sometimes get a negative value for T −k.

For instance, for T = 30, K = 4, r = 3 and p = 5 we find T − k = −2. Therefore, we use

k = r + r + K(p− 1) + 1 (2.15)

as an alternative measure for the approximate number of estimated parameters in one equation. It

is yet unclear which k is the preferred correction, but the discussion already highlights one major

drawback of small sample corrections of test statistics: The choice of k is somewhat arbitrary

and the optimal k might depend on the specific properties of the considered system. To avoid the

problem of choosing k, we can alternatively estimate a bootstrap version of the LR statistic using

the following procedure:

1. Estimate the cointegrated model under H0, record the LR test statistic and save the parame-

ters α̂, β̂, Γ̂, Ξ̂.

2. Draw bootstrap residuals u∗
1, . . . , u

∗
T with replacement from estimated centered residuals

û1 − ū, . . . , ûT − ū, where ū = (1/T )
∑T

t=1 ût.

3. Generate bootstrap time series y∗
t recursively using α̂, β̂, Γ̂, Ξ̂ and given presample values

y−p+1, . . . , y0.
1Here we consider the number of parameters in a model with intercept only.
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4. Estimate the LR statistic using the bootstrap time series.

5. Repeat 2. - 4. many times.

6. Compare LR with the (1 − α)-quantile of the bootstrap distribution.

Since LR is asymptotically pivotal, this might be a classical situation where the bootstrap is useful

(see Horowitz & Savin (2000)). To assess the small sample performance of all tests we use Monte

Carlo simulation techniques.

3 Monte Carlo Evidence

The aim of the Monte Carlo study is to find out whether the LR test (possibly corrected in small

samples) or the Subset test is the best way to model the loading coefficients α. Therefore, we first

compare empirical sizes of the standard LR test (2.5) and (2.8) with those of the Subset test. Then,

we present results for the modified statistics (2.12) and (2.13) and compare them to results of the

bootstrap test.

We use two types of DGPs. DGPs of the first type are data based, i.e. in the Monte Carlo we

use parameters that have been estimated by fitting a VAR model to real world data. We do so to

get a realistic DGP in terms of dimension, dynamics and cointegration properties. The second set

of DGPs are artificial ones, because this enables us to change the properties of the cointegration

space (i.e. the cointegrating rank).

The parameters for the data based DGPs have been generated by fitting cointegrated VAR mod-

els to a data set for the U.K. monetary sector. The data were first analyzed by Hendry & Ericsson

(1991) and later reconsidered by inter alia Johansen (1992), Hendry (1995) and Doornik, Hendry

& Nielsen (1998). We use the data because we think they represent a typical system analyzed with

cointegration techniques. The data include the log of M1 money (m), the log of TFE deflator (p),

the log of real TFE in 1985 prices (inc) and a measure of opportunity costs for holding money (R),

the typical ingredients for a money demand analysis. We estimate VAR models under the rank re-

striction r = 1 with lag order p ranging from 1 to 5 including an unrestricted constant. In addition,

we impose the weak exogeneity restrictions α2 = α3 = α4 = 0 and save α̂, β̂, Γ̂1, . . . , Γ̂p−1,Ξ and

Σ̂u. To conserve space, we only list the cointegration parameters in Table 1. The remaining pa-

rameters are available from the author on request. Obviously the β parameters vary only very little

when increasing the lag length. The data based DGPs therefore have very similar cointegration

properties.

To assess the influence of the cointegrating rank, we have also considered artificial DGPs and

give the cointegration parameters in the bottom panel of Table 1. Using δ1 and δ2 we can vary the

cointegrating rank of the system between one and three. For instance, if δ1 = δ2 = 1 then the

cointegrating rank of the DGP is r = 3. For each choice of r we also consider different dynamics

by varying p from 1 to 5. For a given p, we use the same values for Γ1, . . . ,Γp−1,Ξ and Σu as in

the corresponding empirical U.K. money demand system.

7



Table 1: DGPs for Monte Carlo Experiments

DGP Cointegration Parameters p Dt

Data Based DGPs:

(a) α′ = ( −0.096 0 0 0 ), β ′ = ( 1 −0.842 −1.541 5.580 ) 1 CON

(b) α′ = ( −0.103 0 0 0 ), β ′ = ( 1 −0.911 −1.365 6.390 ) 2 CON

(c) α′ = ( −0.097 0 0 0 ), β ′ = ( 1 −0.930 −1.356 6.813 ) 3 CON

(d) α′ = ( −0.128 0 0 0 ), β ′ = ( 1 −0.950 −1.272 6.905 ) 4 CON

(e) α′ = ( −0.153 0 0 0 ), β ′ = ( 1 −0.957 −1.234 6.891 ) 5 CON

Artificial DGPs:

α =




−0.1 0 0

0 −0.2δ1 0

0 0 −0.3δ2

0 0.1δ1 0


, β ′ =


 1 −1 0 0

0 1δ1 −1δ1 0

0 0 1δ2 −1δ2




(f)–(k) δ1 = 0, δ2 = 0 1– 5 CON

(l)–(p) δ1 = 1, δ2 = 0 1– 5 CON

(q)–(u) δ1 = 1, δ2 = 1 1– 5 CON
Note: Parameter values for Γ1, . . . ,Γp−1 as well as Ξ correspond to estimated values from the

U.K. money demand model with lag order p. CON is an unrestricted constant.

From both DGP types, we have generated 1000 replications of length T ranging from 30 to

1000 and fit a cointegrated VAR model. In this paper, we are primarily interested in the test for

weak exogeneity and therefore estimate the models using the correct lag length p and the correct

cointegration rank r. Moreover, for DGPs with r > 1, we also estimate the model using ‘correct’

identifying assumptions that exactly identify all cointegration vectors. For example, when using

DGPs (l)–(p), we impose the following restrictions on β:

β ′ =

(
1 −1 ∗ ∗
∗ 1 −1 ∗

)
, (3.1)

where ∗ indicates free elements of β. In principle, imposing correct p, r and identifying assump-

tions should improve the performance of the weak exogeneity tests relative to the situation faced in

practice. Nevertheless, we conduct the experiments as if p, r and the identifying assumptions were

known, because we want to assess the test itself and not other factors affecting its performance.

Using the test statistics (2.5),(2.8), (2.12) and (2.13) we then test the following hypotheses

• H1
0 : α21 = 0

• H2
0 : α21 = α31 = 0

• H3
0 : α21 = α31 = α41 = 0
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Note that in this case, df , the degree of overidentification is simply the number of α coefficients

to be tested, because β is exactly identified. If we use the Subset test, we first reduce the short run

dynamics, i.e. we impose zero restrictions on Γ, before conducting a t-test for H 1
0 and F -tests for

H2
0 and H3

0 .

For all tests, we record the relative rejection frequencies of the hypotheses, i.e. the empirical

size. Given the nominal size of P = 0.05 and 1000 Monte Carlo replications the standard error of

the Monte Carlo is
√

P (1 − P )/1000 and hence the 2 standard error confidence interval around the

nominal size is (0.036; 0.064). All simulations were performed using GAUSS v3.2 for Windows.

For convenience we present the results graphically and discuss them in the following sections.

3.1 LR- vs. Subset Test

Figure 1 shows the empirical size (i.e. the relative rejection frequency of the true H0) of the stan-

dard LR and the Subset test for sample sizes T ranging from 30 to 100 and for the data based

DGPs (a) to (e). The confidence band around the nominal size is indicated by the dashed horizon-

tal lines. For T = 30 and T = 60, the empirical sizes of both tests are clearly above the desired

level of 5% in all cases. We find that the empirical size increases with the lag length of the system.

Although applied researchers most likely avoid to fit large lag dynamics to short time series, we

have included results for T = 30 to get a sense on how bad things can get. In these very small

samples, we find severe size distortions for both test types with sizes ranging anywhere between

13 and 99 %. We also find that the performance of both tests deteriorates with increasing degrees

of overidentification, i.e. the empirical size increases when moving from H 1
0 to H2

0 and H3
0 . In

almost all cases the LR test has sizes considerably closer to the nominal level than the Subset test.

For p = 1, however, we find that the Subset test and the LR test perform very similar. This can

be expected, because there is no search for zero restrictions if p = 1 in the Subset test and hence,

both tests are very similar. In contrast, for p > 1, we search for zero restrictions in Γ when using

the Subset test and we consistently get more severe size distortions than for LR. We also observe

that the Subset test performs increasingly worse relative to LR when increasing the lag length p.

This might be an indication that the performance of the Subset test is adversely affected by the

number of model selection steps involved. Interestingly, this phenomenon is not simply a small

sample problem. To see this, we have repeated the Monte Carlo for T = 200, 500, 1000 and give

results in Figure 2. For the LR test we find empirical sizes fairly close to the 5% level and almost

always within the confidence band. In other words, the LR test works very well in sufficiently

large samples. In contrast, the Subset test is still severely oversized even if T = 1000, a case

virtually never encountered in real world macroeconometric time series modeling. We have also

repeated the Monte Carlo comparison for the artificial DGPs and basically find the same picture.

To conserve space we do not show these results here.

To sum up, the results suggest to use the LR test for hypotheses on β and α first, before imposing

exclusion restrictions on Γ. However, we also find size distortions of the LR test in small samples
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and hence, it may be worthwhile to consider the small sample modifications and the bootstrap

version discussed in Section 2.3.

3.2 Small Sample Correction and the Bootstrap LR Test

Figure 3 again shows the size of LR now with additional results for LRM , F and LR∗. Results

for the LRM have been obtained by using the correction (2.14). We do not show results for using

(2.15), because these corrections are less effective and perform worse than the ones shown. Results

for the bootstrap version are based on 200 bootstrap draws in each Monte Carlo replication.

The results for the data based DGPs (a)-(e), Figure 3, show that the F approximation reduces

the actual size only very little and there is only a minor improvement compared to LR. In contrast,

the LRM test can reduce the empirical size quite substantially, although the resulting size is still

larger than the nominal level. Similarly, LR∗ brings down the empirical size very close to the

desired level with the exception of the case of T = 30 and large p. As pointed out before, these

cases are rarely encountered in practice. In the majority of cases, the bootstrap version LR∗ has

the best size properties of all considered test statistics, although for the DGPs (a)-(e) the difference

between LR∗ and LRM is small.

To get a more informative and general picture of the relative performance of all four tests and

to investigate the influence of the cointegration rank, we also show results for the artificial DGPs.

To be more precise, for DGPs (f)-(k), i.e. r = 1, we plot the results in Figure 4. Compared

to the oversized LR statistic, we again find that the F approximation only leads to very small

improvements. On the other hand, LRM works relatively nicely when p is large. This can be

explained by the fact that the correction is a function of p. In many cases, we find LR∗ to have the

smallest empirical size, often fairly close to the desired level (especially for T = 60 and T = 100).

If we increase the cointegrating rank of the underlying DGP to r = 2 and r = 3 (Figures 5

and 6), we once more find evidence for massive size distortion for the LR test. In contrast to what

has been said, we now find that neither F nor LRM work satisfactorily. For T = 30, LRM has

a tendency to overcorrect, i.e. the modified tests have empirical sizes that is significantly smaller

than the nominal size. In some cases, it even drops down to zero (see Figure 5 and 6, column

1). This behavior is normally associated with a loss in power against alternatives and hence, not

desirable. In most cases, LR∗ does again the best job and its empirical size is very close to the

desired level. It is interesting to note, that the bootstrap works better when r = 2 or r = 3. This

fact may be due to the exact identifying assumptions. Obviously, it pays to introduce the right

structure on the long run coefficients. The small sample corrected versions, however, only work

sometimes and often result in empirical sizes smaller than the nominal size.

We compare the power of the bootstrap test LR∗ to the size-adjusted power of the standard LR

test to check whether using the bootstrap is associated with loss in power against alternatives. For
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the power simulations we use DGPs from Table 1 and let α21 vary according to

α21 =
b√
T
, b ∈ {0, 0.2, 0.4, . . . , 3}, (3.2)

and record the rejection frequencies for hypotheses H1
0 , H2

0 , H3
0 . To make results comparable, we

compute the size-adjusted power of the standard LR test, i.e. we adjust the critical values such that

the empirical size of LR is exactly 0.05. Moreover, we only compare cases, where the empirical

size of the bootstrap test LR∗ is very close to 0.05. As a typical result from the power simulations,

Figure 7 shows the comparison for DGP (s), i.e. a DGP with cointegrating rank r = 3 and p = 3.

For H1
0 there is virtually no difference between the power of LR∗ and LR, whereas for H2

0 and H3
0

the bootstrap test is more powerful than LR. For T = 100, however, the differences are again very

small. The comparison indicates that using the bootstrap is not associated with a loss in power. In

fact, the bootstrap test has sometimes even more power than the standard test.

Overall, the results from the Monte Carlo experiments indicate that the bootstrap test LR∗ has

the most favorable size properties and its power is comparable to the standard LR test. Since the

performance of the LR test depends on the sample size, the dynamics p, the degree of overiden-

tification and the cointegrating properties of the underlying system, LR∗ does a better job than

the suggested small sample modifications. Consequently, it is advisable to use LR∗ for testing

restrictions on α.

4 Conclusions

We have considered different methods for testing the significance of loading (or feedback) coeffi-

cients in cointegrated VAR models. Testing hypotheses on the loading coefficients is also closely

related to the concept of weak exogeneity with respect to the long run parameters. We argue that

these tests are important to identify and interpret the short run structure in a cointegrated VAR

model in a meaningful way. Therefore, we are interested in the size properties of these tests in

small samples. Both test types have frequently been used in applied work. The first one is the stan-

dard LR test in the Johansen framework. The second test is based on mapping the cointegrated

VAR model into VECM representation and then reducing the model using some model selection

procedure before testing the significance of the α parameters.

We have conducted a number of Monte Carlo experiments and find considerable size distortions

in small sample situations. More precisely, both tests reject the true null too often. Only when no

model selection of the short run dynamics is conducted within the Subset test, it performs similar to

the LR test. In all other cases, we find that the LR test has more favorable size properties in small

samples. The Monte Carlo study reveals that the size distortions for the Subset test are not simply

a small sample phenomenon, but a problem that does not vanish in large samples. Obviously, these

size distortions are related to the model selection of lagged differences. Overall, the results from

the comparison suggest to use the LR- rather than the Subset test.

11



Since the LR test also has size distortions in small samples, we also investigated the perfor-

mance of two small sample modifications and a bootstrap version of this tests. We find that the F

approximation cannot successfully reduce the size distortions, while a crude small sample modifi-

cation works in some of the considered cases. In some other cases, however, LRM has a tendency

to overcorrect the size distortion. Since the performance of tests on α typically depends on a

number of factors, such as sample size, cointegrating properties, lag length, we suggest to use the

bootstrap test LR∗ in applied work, because it provides the most reliable size correction and hence,

the most favorable small sample behavior.

The results have important implications for empirical model building: Testing the significance

of loading parameters should be done within the Johansen framework, possibly using a bootstrap

corrected test. In other words, the long run parameters β and the short run adjustment structure

α should be modeled carefully in a first step, before mapping the model to I(0) and imposing

additional restrictions on coefficients Γ for the lagged differences. Given the properties of the

Subset test procedure, it can most likely not successfully be used as ‘a form of data exploration’ to

identify a meaningful adjustment structure. Researchers using a strategy similar to the Subset test

most certainly use additional modeling tools, such as a battery of misspecification tests to derive

their final model. Therefore, in practice, researchers may revise the model specified by the Subset

test based on additional evidence and expert knowledge. Clearly, we cannot mimic this behavior

in our Monte Carlo comparison. Therefore, the Subset test may work better in practice than our

simulation results suggest. In practice, it may thus be advisable to start with the LR∗ test for

exclusion restrictions on α. Then, one may set up the VECM, impose restrictions on Γ and finally

check again the significance of α parameters to derive the final model.
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Figure 1: Size of LR- and Subset test DGPs (a)-(e), T = 30, 60, 100 (columns)

T = 200 T = 500 T = 1000
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Figure 2: Size of LR- and Subset test DGPs (a)-(e), T = 200, 500, 1000 (columns)
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Figure 3: Size of LR, LRM , F and LR∗, DGPs (a)-(e), T = 30, 60, 100 (columns)
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Figure 4: Size of LR, LRM , F and LR∗, DGPs (f)-(k), T = 30, 60, 100 (columns)
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Figure 5: Size of LR, LRM , F and LR∗, DGPs (l)-(p), T = 30, 60, 100 (columns)
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Figure 6: Size of LR, LRM , F and LR∗, DGPs (q)-(u), T = 30, 60, 100 (columns)
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Figure 7: Power estimates of LR∗ (——–) and LR (size-adjusted) (- - - - -). Results are based on

DGP (s) with α21 = b/
√
T
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