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1. Introduction

Do expectations about the current and future state of the economy matter for banks’ lending decisions?

The Senior Loan Officer Opinion Survey conducted by the Board of Governors of the Federal Reserve

System gives an unambiguous answer to this question. Figure 1 illustrates that, when commercial banks in

the U.S. adjust their lending standards, they report that “economic outlook” is a somewhat or very important

reason for tightening standards in a recession as well as for easing standards in a boom or recovery.

In this paper, we model the lending decision of a risk-neutral competitive financial intermediary subject

to a signal extraction problem. While maintaining the assumption of rational expectations, we depart from

the frequently associated assumption of full information. Hence, our rational financial intermediary knows

the structure of the model, whereas it must forecast the latent state of the economy, which determines the

default probability of a given loan next period, based on noisy observables. A positive signal about the

current state induces the bank to lend to objectively riskier borrowers in expectation of higher future returns.

If the signal is pure noise, however, the expansion of credit is not backed by economic fundamentals and

would not occur under full information and rational expectations. To the best of our knowledge, we are the

first to analyze the lending decision of financial intermediaries in a noisy information environment.

Building on the partial equilibrium neoclassical investment model in Bordalo et al. (2018), we show that

pure noise shocks generate credit booms and busts, if the intermediary cannot observe the true state of the

economy and must infer the riskiness of a loan from observables and a noisy public signal. This is costly,

as default rates increase when the bank’s expectations turn out to be overly optimistic ex post. Importantly,

these credit cycles are driven exclusively by imperfect information of financial intermediaries rather than by

any kind of financial friction between the borrower and the lender.

Due to this informational friction, the vector-autoregressive (VAR) representation of our model is not

invertible. To quantify the role of noise shocks in U.S. credit spreads and volumes, we therefore embed the

neoclassical investment model in a general equilibrium setting. We close the partial equilibrium model by

assuming that bank lending is funded by accumulated bank net worth and by external funds in the form of

risk-free deposits. In order to focus on the propagation of noise shocks through credit supply, we assume

the supply of bank deposits to be perfectly elastic, as in a small open economy. Following Blanchard et

al. (2013), we solve the linearized general equilibrium model under imperfect information and estimate its

equivalent full information representation using Bayesian maximum likelihood techniques.

2



1995 2000 2005 2010 2015
−50

−40

−30

−20

−10

0

10

20

30

40

50
N

um
be

r 
of

 b
an

ks
 c

ha
ng

in
g 

le
nd

in
g 

st
an

da
rd

s

 

 

unimportant somewhat important very important

Figure 1: The importance of “economic outlook” for changes in lending standards of U.S. commercial banks

Notes: Number of banks reporting that “economic outlook” was unimportant, somewhat important, or very important for tightening

(if positive) or loosening (if negative) lending standards. Source: Senior Loan Officer Opinion Survey on Bank Lending Practices

Calibrating the model’s driving processes along the lines of our empirical estimates, we find that noise

shocks contribute up to 50% to the forecast error variance of the spread between Moody’s seasoned Baa

corporate bond yield and the yield on 10-year treasury constant maturity and credit growth at the 5-year

horizon. Contrasting our model with the data, we find that it reproduces the historical fluctuations of errors

and revisions in Blue Chip survey expectations as well as of U.S. delinquency rates on bank loans.

Our paper is most closely related to the literature on the expectations formation process of investors and

financial intermediaries and the literature on the aggregate effects of imperfect information. When modeling

the behavior of profit-maximizing financial intermediaries, existing work on the role of expectations in the

emergence of lending cycles mostly focuses on deviations from rational expectations. Bordalo et al. (2018),

for example, build on insights from cognitive psychology and assume that risk-neutral investors form so-

called diagnostic rather than rational expectations. De Grauwe and Macchiarelli (2015) instead assume that,

due to limited cognitive abilities, banks apply simple extrapolative rules when deciding whether and under

which conditions to grant a loan. Similarly, Greenwood et al. (2016) model “credit market sentiment” by

assuming that investors extrapolate past defaults when forming expectations about the creditworthiness of

their borrowers. Bhattacharya et al. (2015) formalize Minsky’s financial instability hypothesis by modeling
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investors that have incomplete information about the true probability measure when forecasting the future

state of the economy. Our model provides an alternative explanation for the emergence of lending cycles

based on the rational processing of noisy information by financial intermediaries. Moreover, we are able to

quantify the relative importance of noise shocks for fluctuations in credit spreads and volumes.

The signal extraction problem of our representative financial intermediary is similar to that of consumers

in Lorenzoni (2009) and Blanchard et al. (2013). We also borrow from Blanchard et al. (2013) a structural

identifying strategy that resolves the non-fundamentalness of the VAR representation in models with im-

perfect information. Cao and L’Huillier (2018) apply this strategy to a small open economy version of the

New Keynesian model. In contrast to all of the above, our focus is on the lending conditions and hence on

the signal extraction problem of financial intermediaries rather than households. This feature gives rise to

a different propagation channel for noise shocks, which operates primarily through financial market rather

than consumer expectations, and implies that noise shocks can be interpreted as credit supply rather than

aggregate demand shocks (as in Lorenzoni, 2009, for example).

Boz and Mendoza (2014) model the signal extraction problem of households who use Bayesian updating

to learn about the risk of a new financial environment. The authors show that the interaction of financial

frictions (i.e. a collateral constraint) and imperfect information results in the underpricing of risk in periods

following financial innovations, such as 1998–2006. The underpricing of risk also features prominently in

our model, where it arises solely from the informational friction on the part of financial intermediaries.

Finally, our work builds on empirical evidence on the role of credit market sentiment for the build-up

of financial vulnerability. Greenwood and Hanson (2013) argue that the credit quality of corporate debt

issuers helps to identify sentiment-driven credit booms, as narrow spreads predict lower future returns to

corporate bondholders. López-Salido et al. (2017) show that time variation in sentiment on the part of credit

market investors is an important determinant of the lending cycle, as it reflects changes in the effective risk

appetite or beliefs about default probabilities. Accordingly, they identify credit booms using proxies for the

expected returns on credit assets rather than balance sheet measures of aggregate credit. The predictions of

our theoretical model, where noise-driven lending booms are manifestations of the underpricing of credit

risk by financial intermediaries and followed by higher default and reduced returns on credit, are broadly

consistent with these empirical regularities.

The rest of the paper is organized as follows. In Section 2, we provide evidence of noisy information in

the financial sector. Section 3 uses a neoclassical investment model to illustrate how credit booms emerge
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Figure 2: Blue Chip consensus nowcasts and forecasts of year-on-year real GDP growth and t + 4 real-time benchmark

in the presence of imperfect information. Section 4 embeds this model in a general equilibrium setting,

proposes a simplified version with only two risk types of borrowers, and derives the reduced-form VAR rep-

resentation of the model. We then estimate the model using Bayesian maximum likelihood techniques and

evaluate the relative importance of noise shocks based on the recovered parameters of the forcing processes.

Section 5 concludes.

2. Empirical Evidence

In this section, we use survey data on banks’ expectations from the Blue Chip Economic Indicators to

provide evidence of imperfect information in the financial sector.1 We focus on the so-called Blue Chip

consensus forecast, i.e. the simple average of forecasts across all survey participants, of real GDP growth as

a key measure of participants’ expectations regarding current and future U.S. economic conditions.

Figure 2 plots Blue Chip consensus forecasts of year-on-year real GDP growth for forecast horizons

from 0 to 4 quarters against a real-time benchmark released by the Federal Reserve Bank of Philadelphia

1The Blue Chip Economic Indicators is a monthly survey of more than 50 economists employed by some of America’s largest
manufacturers, banks, insurance companies, and brokerage firms. It was established in 1976 and collects professional forecasts on
macroeconomics aggregates for the U.S. economy. What makes it particularly interesting and suitable for our question is that the
majority of the survey participants are U.S. commercial and investment banks.
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with a lag of four quarters.2 In general, the Blue Chip consensus forecasts are relatively accurate in real time

and track the t + 4-benchmark closely. Nevertheless, we detect quantitatively large and persistent deviations

during selected historical episodes.3 During 1987–1990 and during 1997–2000, for example, forecasts were

persistently more pessimistic about current real GDP growth than suggested by real-time data. In contrast,

forecasts were optimistic relative to the t + 4-benchmark during 1990–1992 and during 2005–2010.

The observed persistence in deviations of Blue Chip consensus forecasts from the real-time benchmark

is inconsistent with the assumption of full information and rational expectations. The latter implies that

forecast errors are unpredictable if the underlying disturbances are unpredictable, whereas we find signifi-

cant positive serial correlation in Blue Chip consensus forecast errors for all forecast horizons. In order to

test more formally for the presence of informational frictions in bank expectations, we draw on Coibion and

Gorodnichenko (2015), who show that, if agents observe the variable xt with normally distributed mean-zero

noise that is i.i.d. across time and across agents, then the individual forecasts based on agents’ information

sets and the Kalman filter imply the following relationship between ex-post mean forecast errors and ex-ante

mean forecast revisions:

xt+h − Ft xt+h =
1 −G

G
(Ft xt+h − Ft−1xt+h) + ut+h,t, (1)

where Ft denotes the average forecast across agents at time t, G the so-called Kalman gain, and ut+h,t the

rational expectations error. The predictability of average forecast errors reflects the gradual adjustment of

conditional expectations to new information by the agents, who don’t know whether this information reflects

a change in fundamentals or pure noise. Note that the specification in (1) holds for any forecast horizon h as

well as for forecasts over multiple horizons (see Coibion and Gorodnichenko, 2015).

Accordingly, models with informational frictions such as noisy information, for example, imply that

ex-ante average forecast revisions have predictive power for ex-post average forecast errors, whereas this is

not the case under full information and rational expectations (FIRE). We replicate the regression analysis in

2We use real-time rather than final data on real GDP growth, because re-classifications and redefinitions might make final data
not directly comparable to Blue Chip forecasts (see Croushore, 2010). We use the t+4-benchmark rather than the so-called advance
release, i.e. the t + 1-benchmark, of the Federal Reserve Bank of Philadelphia, given that a large share of revisions in real-time data
occurs within one year after the advance release.

3We plot the Blue Chip consensus nowcasts and forecasts based on the third monthly round of a given quarter, i.e. from the
March, June, September, and December releases, to measure expectations as of quarter I, II, III, and IV, respectively. Releases from
the first and second month of each quarter yield similar results.
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Table 1: Tests of bank expectations process for real GDP growth based on the regression equation in (2)

yoy real GDP growth qoq real GDP growth
Horizon Benchmark c β R2 c β R2 N

t + 1 0.038 0.072∗ 0.013 0.233∗ 0.145 0.012 125
t + 2 0.048 0.098 0.012 0.288∗ 0.167 0.010 125

h = 0 t + 3 0.045 0.209∗∗ 0.040 0.297∗∗ 0.087 0.003 125
t + 4 0.042 0.192∗ 0.026 0.272∗ 0.105 0.004 125
t + 5 0.029 0.190 0.022 0.280∗ 0.170 0.010 125
t + 1 0.089∗∗ 0.869∗∗∗ 0.673 0.156 1.011∗∗∗ 0.167 124
t + 2 0.100∗ 0.903∗∗∗ 0.560 0.211 1.044∗∗∗ 0.133 124

h = 1 t + 3 0.102 1.008∗∗∗ 0.550 0.212 0.909∗∗∗ 0.101 124
t + 4 0.098 0.987∗∗∗ 0.468 0.197 0.979∗∗∗ 0.114 124
t + 5 0.092 0.972∗∗∗ 0.430 0.238 1.078∗∗∗ 0.131 124
t + 1 0.077 0.974∗∗∗ 0.480 −0.074 1.548∗∗∗ 0.118 123
t + 2 0.092 1.021∗∗∗ 0.442 0.010 1.824∗∗∗ 0.131 123

h = 2 t + 3 0.096 1.121∗∗∗ 0.477 0.019 1.633∗∗∗ 0.106 123
t + 4 0.096 1.114∗∗∗ 0.445 −0.026 1.751∗∗∗ 0.117 123
t + 5 0.091 1.110∗∗∗ 0.410 0.018 1.984∗∗∗ 0.139 123
t + 1 0.101 0.911∗∗∗ 0.135 −0.276 0.928 0.019 122
t + 2 0.126 1.004∗∗∗ 0.145 −0.210 1.242 0.027 122

h = 3 t + 3 0.141 1.120∗∗∗ 0.169 −0.177 1.180 0.025 122
t + 4 0.142 1.119∗∗∗ 0.158 −0.229 1.386 0.034 122
t + 5 0.136 1.140∗∗∗ 0.154 −0.213 1.524 0.037 122

Notes: ∗ ∗ ∗/ ∗ ∗/∗ indicates statistical significance at the 1/5/10% level based on Newey-West (HAC-robust) standard errors.

Coibion and Gorodnichenko (2015) using Blue Chip consensus forecast errors and revisions as of period t

for forecast horizon h:

xt+h − Ft xt+h = c + β (Ft xt+h − Ft−1xt+h) + errort, (2)

where a statistically significant coefficient β indicates a rejection of the null hypothesis of FIRE in favor of

the alternative hypothesis of informational frictions in the presence of rational expectations. Table 1 reports

our regression results for U.S. bank expectations on year-on-year and quarter-on-quarter real GDP growth,

respectively, for 1984Q4 through 2015Q4.

For year-on-year growth rates, the null of FIRE is strongly rejected in favor of informational frictions.

The coefficient estimate on forecast revisions, β, is statistically significant (most frequently at the 1% level),

whereas the estimated intercept coefficient c is close to zero and not statistically significant. This finding is

quantitatively more pronounced for h = 1, 2, 3 and also reflected in a higher value of R2 in these cases. It is

important to note that our results are robust to the choice of the real-time benchmark used to evaluate Blue
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Chip consensus forecast errors, where t + 1 corresponds to the so-called advance release and t + l to the data

on period t made available by the Federal Reserve Bank of Philadelphia with a lag of l quarters.

For quarter-on-quarter growth rates of real GDP growth, the results are qualitatively similar for h = 1 and

h = 2, yet less clear-cut for h = 0 and h = 3. Given that quarter-on-quarter data displays more unexplained

fluctuations, the corresponding R2 values are lower than their year-on-year counterparts. At the same time,

the point estimates of β tend to be larger.

Coibion and Gorodnichenko (2015) show that the point estimate of β translates directly into the degree

of informational rigidity in a noisy information model. For β = 1.1, i.e. the mode of our point estimates,

the Kalman gain G = 1/(1 + β) = 0.476 reflects the weight that agents assign to new information relative

to their previous forecasts.4 Based on this evidence, we reject the null hypothesis of FIRE in favor of the

alternative hypothesis of informational frictions in Blue Chip consensus forecasts of real GDP growth — a

measure of U.S. bank expectations about the current and future state of the economy. While we don’t make

use of the quantitative estimate of G, the qualitative finding of a rejection of FIRE motivates our analysis of

noisy information as a source of lending cycles in a theoretical investment model.

3. The Partial Equilibrium Model

We start by illustrating the intuition in a neoclassical partial equilibrium investment model similar to the

one proposed by Bordalo et al. (2018).

3.1. Partial Equilibrium Model under Full Information

Time t = 1, 2, . . . is discrete and the economy’s state at time t, Ωt ∈ R with realization ωt, follows a

Markov process with a normal distribution conditional on Ωt−1, as in the AR(1) case

ωt − µω = b (ωt−1 − µω) + εωt , (3)

with εωt ∼ N
(
0, σ2

ω

)
and µω ∈ R, b ∈ [0, 1].

4The Kalman gain also reflects the average reduction in the variance of contemporaneous forecast errors relative to the variance
of one-step ahead forecast errors (see Coibion and Gorodnichenko, 2015).
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3.1.1. Credit demand by firms

A unit measure of atomistic firms uses capital to produce output, where productivity at time t depends

on ωt to a different extent for different firms. Each firm is identified by its risk type, ρ ∈ R. Firms with

higher ρ are less likely to be productive in any state ωt and represent thus a riskier investment. The output

of a type-ρ firm at time t is given by

y (k|ωt, ρ) =


kα if ωt ≥ ρ

0 if ωt < ρ
,

where α ∈ (0, 1).

The capital used for production at time t + 1 must be installed at time t already, before ωt+1 is known.

For simplicity, we assume that capital depreciates fully in production. Each firm’s risk type ρ is common

knowledge and distributed across firms according to the continuous density function f (ρ).

Each firm’s capital investment is fully debt funded. A firm of type ρ borrows funds lt(ρ) = kt+1(ρ) from

a bank, taking the contractual interest rate rt(ρ) as given. It repays the loan only if the realized state of the

economy allows the firm to be productive. Else, it defaults and repays nothing.

Assuming perfect competition in production, each firm type ρ borrows up to the point where the marginal

product of capital equals the cost of borrowing from the bank, i.e.

lt(ρ) = kt+1(ρ) =

[
α

rt(ρ)

] 1
1−α

. (4)

3.1.2. Credit supply by banks

Suppose that the credit market is perfectly competitive, while the representative bank owns a stock of

net worth that can be used to grant loans. In contrast to the representative household in Bordalo et al. (2018),

which elastically supplies any amount of capital at the risk-free interest rate, the lenders in our model do

not make optimal consumption-saving decisions. Instead, we assume that the risk-neutral representative

bank invests all of its net worth, nt, until it exits the credit market (exogenously) and gets to consume its

accumulated net worth.

Similar to the behavior of entrepreneurs in Bernanke et al. (1999), the representative bank myopically

maximizes its expected net worth in the next period. Given a predetermined amount of bank net worth, nt,

and a risk-free interest rate on deposits, rd
t , that is assumed to be determined outside the partial equilibrium
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model (e.g. by monetary policy or household preferences), banks maximize Etnt+1 by optimally choosing

the amount of lending lt(ρ) supplied to each firm type ρ:

max
lt(ρ)

Probt (ωt+1 ≥ ρ) rt(ρ)lt(ρ) −
[
lt(ρ) − nt(ρ)

]
rd

t

∂Etnt+1

∂lt(ρ)
= Probt (ωt+1 ≥ ρ) rt(ρ) − rd

t = 0

⇔ r∗t (ρ) =
rd

t

Probt (ωt+1 ≥ ρ)
, (5)

where Probt(•) denotes the expected repayment probability as of period t, which is assumed to be indepen-

dent of rt(ρ). As a result, we have a unique interior solution for the bank’s optimal choice of rt(ρ) for each

firm type ρ.5 Equations (4) and (5) yield a unique interior solution for the firm’s optimal demand for credit:

l∗t (ρ) =

[
α · Probt (ωt+1 ≥ ρ)

rd
t

] 1
1−α

. (6)

From equations (5) and (6), a higher expected probability of repayment translates into a lower interest rate

on bank credit, r∗t (ρ), and thus a higher demand for bank credit and capital, l∗t (ρ), for each firm type ρ.

Figure 3 plots the equilibrium interest rate in (5) and the demand for capital and bank credit in (6) by

firm type ρ and illustrates that low-ρ types with a negligible risk of default pay an interest rate on bank credit

that is close to the risk-free rate. The figure represents a snapshot of the economy for a given expected value

and variance of ωt+1 conditional on the information available in period t. The broken lines depict the effect

of an increase in Etωt+1 = µω without any change in Etσω,t+1.

In contrast, Figure 4 plots the equilibrium interest rate in (5) and the demand for capital and bank credit in

(6) as a function of the expected repayment probability. Changes in Etωt+1 affect the position of a given firm

type ρ on the x-axis rather than shifting graphs (as in Figure 3). Figure 4 illustrates that symmetric increases

and decreases in the expected repayment probability have asymmetric effects on the equilibrium interest rate

and thus on the demand for bank credit for a given firm type ρ. Due to the presence of Probt (ωt+1 ≥ ρ)

in the denominator of (5), this asymmetry is more pronounced for low expected repayment probabilities,

where a decrease in Probt (ωt+1 ≥ ρ) raises the equilibrium interest rate by more than a symmetric increase

5Our formulation of the representative bank’s profit maximization problem implies that the marginal unit of credit is financed
by deposits rather than bank net worth. Hence, the marginal cost of extending an additional unit of credit equals the risk-free interest
rate rd

t rather than the opportunity cost of bank net worth.
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3.2. Partial Equilibrium Model under Imperfect Information

Suppose that the exogenous default threshold ωt summarizes the persistent and transitory components

νt and ηt, respectively, which are both unobservable. As a consequence, the bank must form expectations

about ωt+1 based on its nowcast of the unobservable components in period t. Using the above notation, the

exogenous processes of the bank’s information problem can be written as

ωt = νt + ηt,

νt = ρννt−1 + et, et ∼ N
(
0, σ2

e

)
, (7)

ηt = ρηηt−1 + εt, εt ∼ N
(
0, σ2

ε

)
,

where et and εt are assumed to be contemporaneously and serially uncorrelated, and ρν > ρη. Following

Lorenzoni (2009), we further assume that the bank receives a noisy public signal of the persistent component

νt at time t, i.e.

s̃t = νt + εt, εt ∼ N
(
0, σ2

ε

)
, (8)

where εt is assumed to be contemporaneously and serially uncorrelated with et and εt.

The disturbance term εt in (8) plays two roles. First, it prevents the bank from perfectly observing the

persistent component of the aggregate state. Second, it generates an independent source of variation in the

bank’s beliefs about νt. Note that the disturbance terms in ηt and s̃t have very different interpretations. While

εt is a shock to the transitory component of the aggregate state and affects thus ωt, εt is a non-fundamental

“noise shock”, which propagates only through the bank’s period-t expectations about ωt+1.

In our partial equilibrium model, the market-clearing interest rate of a loan to firm type ρ thus equals

r∗t (ρ) =
rd

t

Prob (ωt+1 ≥ ρ|ωt, ωt−1, . . . , s̃t, s̃t−1, . . .)
∀ρ, (9)

where the information set of the bank in period t is confined to current and past realizations of the observable

variables ωt and s̃t.

Note that only shocks to the persistent component contribute to fluctuations in νt = ρννt−1 +et. However,

νt is not observable either contemporaneously or with a lag. Assuming rational expectations (RE), agents

must therefore infer the current value of νt from observable variables. Applying Kalman filtering techniques

and assuming that ρη = 0 in the transitory component, it can be shown that the optimal period-t nowcast of

12



the persistent component corresponds to the following projection on ωt, s̃t, and the period-t − 1 nowcast of

νt−1:

νt|t = (1 − κ1 − κ2) ρννt−1|t−1 + κ1ωt + κ2 s̃t, (10)

where κ1 ≡
σ2
νσ

2
ε

σ2
νσ

2
ε+σ

2
νσ

2
ε+σ

2
εσ

2
ε
, κ2 ≡

σ2
νσ

2
ε

σ2
νσ

2
ε+σ

2
νσ

2
ε+σ

2
εσ

2
ε
, and σ2

ν implicitly solves σ2
ν = ρ2

ν

(
1
σ2
ε

+ 1
σ2
ε

+ 1
σ2
ν

)−1
+ σ2

e .

Ceteris paribus, the weight on either observable is increasing in the variance of the other observable as

well as in the variance of the persistent component. Conversely, κ1 → 0 as σ2
ε → 0, κ2 → 0 as σ2

ε → 0, and

κ1, κ2 → 0 as σ2
ν → 0. Hence, a higher weight is put on the relatively more precise observable, whereas both

observables receive a higher weight if νt exhibits more volatility. In Appendix A, we derive the state-space

representation of the bank’s signal extraction problem and the complete set of Kalman filter updating and

forecasting expressions in matrix notation.

3.3. Impulse Response Functions under Imperfect Information

Based on the Kalman filter updating and forecasting expressions in equations (A.1) and (A.2), we can

simulate the bank’s expectation about ωt+1 and thus the expected repayment probability for each firm type

ρ as of time t, Prob (ωt+1 ≥ ρ|ωt, ωt−1, . . . , s̃t, s̃t−1, . . .). Using these probabilities in the partial equilibrium

model in equations (6) and (9), we can then derive the bank’s profit-maximizing interest rate for a given loan

and the corresponding credit demand for each firm type ρ.

To compute the ex-ante aggregate demand for credit by firms at time t before the realization of ωt, we

integrate over the support of the density function of firm types, f (ρ). To compute the ex-post aggregate

amount of capital available for production after the realization of ωt, we integrate over f (ρ) from the lower

bound of the support up to ωt+1. Accordingly, the aggregate demand for credit is computed for all firm types

ρ, whereas the aggregate amount of capital at time t is computed only for non-defaulting firm types ρ < ωt.

Due to the non-linearity of the partial equilibrium model in (6) and (9), we compute generalized impulse

response functions (see Koop et al., 1996) to a shock in the persistent (a.k.a. “trend”), the transitory (a.k.a.

“cycle”), and the noise component, respectively, by simulation as follows:

1. Drawing et, εt, and εt from their stochastic distributions, we simulate equations (7) and (8) for T = 250

periods and save the resulting time series for ωt and s̃t. We then impose a unit shock on the persistent,

transitory, or noise component at time t0, i.e. et0 = 1, εt0 = 1, or εt0 = 1, and save the resulting time

series for ω′t and s̃′t .
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2. Given initial values for s0|0 and Σ0|0, we compute s1|0, Σ1|0, and y1|0 and simulate equations (A.1) and

(A.2) recursively for t = 1, ...,T . Using the Kalman filter forecast of Probt (ωt+1 ≥ ρ), we compute

the equilibrium interest rate and the corresponding credit demand for each firm type ρ and integrate

over all firm types.

3. The path-dependent impulse response function to a shock in the persistent, transitory, or noise compo-

nent can then be computed as the period-by-period difference between the path of a certain ρ-specific

or aggregate variable with and without the respective shock for t = 1, ...,T .

4. We repeat steps 1-3 a large number (N) of times and take the period-by-period average across the

path-dependent impulse response functions for all N replications.

In all simulations, we use N = 500 replications and allow for a burn-in of 100 periods to be discarded when

computing impulse response functions.

The exogenous processes in (7) and (8) are calibrated in line with our estimates of a general equilibrium

version of this model discussed below, i.e. ρν = 0.7445, σe = 0.0645, σε = 1.5432, and σε = 0.6415, while

we set ρη = 0 for illustrative purposes. The remaining parameters of our partial equilibrium model are set

to conventional values. In particular, we set the elasticity of output with respect to capital to α = 0.35 and

the gross risk-free interest rate on bank deposits to rd
t = rd = 1.01. We further assume that firm types ρ are

normally distributed with zero mean and unit variance, i.e. ρ ∼ N (0, 1).6

The impulse responses to a positive unit shock in the persistent, transitory, and noise component, respec-

tively, are plotted in Figures 5, 6, and 7. In each case, we simulate and plot impulse response functions un-

der imperfect information (“Kalman”) as well as under full information and rational expectations (“FIRE”),

where the information set in period t contains the current and past realizations of ωt, s̃t, νt, and ηt, i.e. the

bank separately observes the transitory and persistent components of ωt under FIRE.

3.3.1. “Trend” shocks

The upper left panel in Figure 5 illustrates that, in response to a unit shock in the persistent component,

ω increases by the amount of the disturbance on impact.7 Under imperfect information and rational ex-

pectations, the source of this increase is unobservable, whereas νt and ηt can be observed separately under

6The assumption on the distribution of ρ is not crucial for the results. We get qualitatively similar results under the assumption
of a uniform distribution.

7Note that the term “trend” shocks in the title is a slight misnomer here, given that the persistent component νt is stationary.
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Figure 5: Impulse response functions to a unit shock in the persistent component based on the partial equilibrium investment model

full information and rational expectations. Accordingly, the imperfectly informed bank initially attributes a

substantial probability to the possibility that the observed increase in ωt indicates a transitory (i.e. cycle) or

noise shock rather than a shock to the persistent component. As the observable remains positive afterwards,

the bank revises its nowcast of the persistent component and thus its forecast of ωt+1 upwards, while the un-

certainty about the origin of the observed change in ωt remains. Only as νt and ωt converge to their long-run

means of zero, the bank stops making systematic forecast errors. In contrast, the bank immediately knows

that the increase in the observable variable is due to its persistent component under FIRE.

For illustrative purposes, we report the responses of two ρ-specific equilibrium lending rates in line with

equation (5). We choose ρ1 = −3 and ρ2 = −1.5 in order to represent a relatively safer and a relatively

riskier firm type from ρ ∼ N (0, 1). In response to a positive shock to the trend component, the bank

optimally lowers the lending rate for both ρ1 and ρ2. Given the necessity of learning about the actual state

of the economy, however, the decrease in r∗t (ρ) is strongly muted and deferred under imperfect information

(Kalman), whereas the equilibrium interest rates under FIRE replicate qualitatively the impulse response

function of the persistent component.

The lower left panels in Figure 5 illustrate the effects of a trend shock on ex-ante aggregate credit and

ex-post aggregate capital. The reduction in equilibrium lending rates induces all firm types ρ to purchase
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more capital financed by bank credit. This increase in the demand for credit is driven exclusively by the

increase in the bank’s expected probability of repayment in the lower right panel, which follows the same

qualitative pattern as νt|t.

Finally, the lower next-to-right panel in Figure 5 illustrates that the share of loans to objectively riskier

firm types in the bank’s portfolio increases in response to a positive innovation in the persistent component.

Due to the fact that a relatively riskier firm type, such as ρ2 = −1.5, is generally more likely to default than a

firm type ρ1 = −3, a change in ωt+1|t has a relatively larger effect on Prob (ωt+1 ≥ ρ2|ωt, ωt−1, . . . , s̃t, s̃t−1, ...)

than on Prob (ωt+1 ≥ ρ1|ωt, ωt−1, . . . , s̃t, s̃t−1, ...). Note that this result is not sensitive to our assumptions

about f (ρ).

3.3.2. “Cycle” shocks

The upper left panels of Figure 6 illustrate that, although the effect of a shock in the “cycle” component

is purely transitory, the bank still attributes part of the observed increase in ω to the persistent component.

Accordingly, the bank expects a higher probability of repayment and expands its supply of credit to both

the relatively safer and the relatively riskier firm type. From the upper right panels, the decrease in r∗t (ρ2)

is quantitatively more pronounced than the decrease in r∗t (ρ1). As a consequence, firms’ aggregate demand

for credit increases, replicating the pattern in ρ-specific equilibrium lending rates with an opposite sign.

The slow learning process under imperfect information implies that the bank’s perceived probability of

repayment for each firm type ρ remains elevated for an extended period before converging back to the long-

run equilibrium. Accordingly, equilibrium lending rates and ex-ante aggregate credit slowly converge back

to the long-run equilibrium. In contrast, neither the lending rates nor ex-ante aggregate credit respond to a

cycle shock under FIRE at all. Once the agent observes the shock, its transitory nature (ρη = 0) implies that

it is too late to expand the supply of credit by lowering lending rates. Under FIRE, it is therefore optimal to

“let bygones be bygones”, if a shock to fundamentals is purely transitory.

Both under imperfect information and under FIRE, ex-post aggregate capital increases on impact due

to the transitory increase in the observable ωt and the corresponding decrease in ex-post firm default, while

its impulse response function remains quantitatively below that of ex-ante aggregate credit from period 2

onwards. The vertical distance between the response of ex-ante credit and the response of ex-post capital

corresponds to ex-post aggregate default of credit due to imperfect information.

From the lower right panels of Figure 6, a positive shock to the cycle component results in a persistent
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Figure 6: Impulse response functions to a unit shock in the transitory component based on the partial equilibrium investment model

increase in the share of loans to objectively riskier (i.e. higher-ρ) firm types and in the subjectively expected

probability of repayment of the bank’s loan portfolio at the same time.

3.3.3. Noise shocks

Figure 7 plots the impulse responses to a unit shock in the noise component of the public signal in (8).

From the upper left panel, a pure noise shock does not have any impact on the observable ωt. Nevertheless,

the positive signal induces the bank to attribute a nonzero probability to the possibility of an increase in the

persistent component and thus in the Kalman-filter forecast of ωt under imperfect information.

Given its expectation of a higher value for ωt+1, the bank revises its expected probability of repayment

upwards and expands its supply of credit to relatively safer firm types, such as ρ1 = −3, and even more so

to relatively riskier firm types, such as ρ = −1.5. As a consequence, the corresponding equilibrium lending

rates decrease, while firms’ demand for credit increases, replicating the pattern in ρ-specific lending rates

with an opposite sign. In contrast, neither the lending rates nor aggregate credit respond to a cycle shock

under FIRE, where the bank realizes that the increase in s̃t represents pure noise.

In order to illustrate the role of imperfect information as a possible driver of credit booms in our partial

equilibrium model, Figure 8 plots the impulse responses of ex-ante credit and ex-post capital to a pure noise

17



0 10 20
0

0.005

0.01

0.015

0.02
Observable ω

U
ni

t s
ho

ck
 to

 n
oi

se

 

 
actual
Kalman
FIRE

0 10 20
0

0.005

0.01

0.015

0.02
Persistent component

 

 
actual
Kalman
FIRE

0 10 20
−2

−1.5

−1

−0.5

0
x 10

−3Lending rate for ρ
1
 (safer)

 

 

Kalman
FIRE

0 10 20
−0.015

−0.01

−0.005

0

Lending rate for ρ
2
 (riskier)

 

 

Kalman
FIRE

0 10 20
0

0.5

1

1.5
x 10

−4Ex−ante credit

U
ni

t s
ho

ck
 to

 n
oi

se

 

 
Kalman
FIRE

0 10 20
0

2

4

6

8
x 10

−5Ex−post capital

 

 
Kalman
FIRE

0 10 20
0

0.2

0.4

0.6

0.8

1
x 10

−3Risky debt in ex−ante credit

 

 
Kalman
FIRE

0 10 20
0

1

2

3
x 10

−3Expected repayment probability

 

 
Kalman
FIRE

Figure 7: Impulse response functions to a unit shock in the noise component based on the partial equilibrium investment model

shock and indicates ex-post aggregate default as the shaded area between the two responses. Accordingly,

the learning process in this simple model implies that the bank might become more optimistic in response

to misleading news about the state of the economy, lower its lending rates accordingly to attract borrowers,

and cause thus an aggregate credit expansion accompanied by an increase in firm default. Note that a similar

noise-ridden credit boom does not occur under FIRE.
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Figure 8: Impulse response function of ex-post credit default to a unit shock in the noise component
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4. The General Equilibrium Model

4.1. A General Version

Suppose that lending to firms is undertaken by a continuum of perfectly competitive financial interme-

diaries, which are endowed with aggregate bank equity Nt and collect aggregate deposits Dt in each period

t. Assuming that firm credit represents the only asset, while bank equity and deposits represent the only

liabilities, the financial sector’s aggregate balance sheet identity is given by

Lt ≡ Nt + Dt, (11)

where Lt denotes ex-ante aggregate credit at the end of period t. The sole purpose of bank equity is to shield

depositors from unexpected fluctuations in the aggregate return on firm credit and guarantee them a risk-free

rate of return on deposits in each state of the world, ωt. To avoid that bank equity Nt grows without bound,

each period a constant fraction δ is assumed to be consumed exogenously by the financial sector. Assuming

a uniform distribution for firm types ρ ∈
[
ρ, ρ̄

]
, aggregate bank equity evolves according to

Nt = (1 − δ)

∫ ωt

ρ
rt−1 (ρ) k∗t (ρ) dρ − Rd

t−1Dt−1

 = (1 − δ)

∫ ωt

ρ
rt−1 (ρ) k∗t (ρ) dρ − Rd

t−1 (Lt−1 − Nt−1)

 ,
where Rd

t−1 denotes the gross risk-free rate of return on bank deposits between period t − 1 and period t.

In order to isolate the propagation of noise shocks via the supply of bank credit from potential demand-

side effects (e.g. consumption and savings), we assume that bank deposits are supplied perfectly elastically

by risk-neutral foreign depositors that demand the exogenous interest rate Rw
t , a.k.a. the “world interest rate”.

Accordingly, the economy-wide resource constraint must account for the payments of principal and interest

on maturing period-t − 1 deposits as well as for the inflows of new deposits in period t, i.e.

Yt = Ct + Lt − Dt + Rd
t−1Dt−1, (12)

where aggregate consumption Ct captures any residual demand for domestic output. Given that we abstract

from the possibility of bank failure, deposits are effectively risk-free and pay the gross rate of return Rd
t = Rw

t

in all states of the economy. Without loss of generality, we further abstract from exogenous fluctuations in

the world interest rate and assume that Rw
t = Rw in each period t.
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Note that aggregate ex-ante credit in period t,

Lt =

∫ ρ̄

ρ
l∗t (ρ) dρ,

is weakly larger than aggregate ex-post capital available for production in period t + 1,

Kt+1 =

∫ ω̄t+1

ρ
k∗t+1 (ρ) dρ.

Making use of the bank’s balance sheet identity in (11) and the production function for firm type ρ,

y∗t (ρ) =


k∗t (ρ)α if ωt ≥ ρ

0 if ωt < ρ
,

we can rewrite the resource constraint in (12) as

Yt =

∫ ωt

ρ
k∗t (ρ)α dρ = Ct +

∫ ρ̄

ρ
l∗t (ρ) dρ − Dt + Rd

t−1Dt−1,

where ρ ∈ [ρ, ωt] contains only firm types that are productive in period t, whereas ρ ∈ [ρ, ρ̄] indicates that

all types demand bank loans in period t which may or may not turn into productive capital in period t + 1.

Under these assumptions, we get the following set of equilibrium conditions for period t:

Rd
t = Rw, (13)

Yt = Ct + Nt + Rd
t−1Dt−1, (14)

Lt = Nt + Dt, (15)

Kt =

∫ ωt

ρ
k∗t (ρ) dρ, (16)

Yt =

∫ ωt

ρ
k∗t (ρ)α dρ, (17)

Lt =

∫ ρ̄

ρ
l∗t (ρ) dρ, (18)

Nt = (1 − δ)

∫ ωt

ρ
r∗t−1 (ρ) l∗t−1 (ρ) dρ − Rd

t−1Dt−1

 , (19)
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where

l∗t (ρ) =

[
α

r∗t (ρ)

] 1
1−α

and r∗t (ρ) =
Rd

t

Prob (ωt+1 ≥ ρ|ωt, ωt−1, . . . , s̃t, s̃t−1, . . .)
.

Equations (13)–(19) yield a system of seven equilibrium conditions in the seven endogenous variables Ct, Yt,

Kt, Lt, Dt, Nt, and Rd
t . Given exogenous processes for the observable variables ωt and s̃t, we can investigate

the general-equilibrium implications of imperfect information for credit spreads, lending, and output.

4.2. A Simplified Version with Two Risk Types

Now suppose that the economy accommodates only two risk types, ρ1 and ρ2, where ρ2 > ρ1 implies that

the second type has a higher probability of defaulting in each state of the world. Both risk types consist of

a unit-mass continuum of firms. As before, ωt = νt + ηt contains the persistent component νt = ρννt−1 + et,

et ∼ N
(
0, σ2

e

)
, and the transitory component ηt = ρηηt−1 + εt, εt ∼ N

(
0, σ2

ε

)
, which are not separately

observable, while the noisy signal of the trend component s̃t = νt +εt, εt ∼ N
(
0, σ2

ε

)
, is publicly observable.

Given that ωt+1 is normally distributed conditional on Ωt, the ex-ante expected repayment probability of

a firm of type ρi, i = 1, 2, in period t + 1 is given by

EtProbi
t+1 ≡ EtProb (ωt+1 ≥ ρi) = 1 − F

(
ρi|Etωt+1|t, Etσ

2
ω,t+1

)
, (20)

where Etωt+1 denotes the expected value of ωt+1 conditional on information available in period t, Etσ
2
ω,t+1

the corresponding variance, and F (•) the normal CDF. In what follows, we fix the risk type and vary Etωt+1.

Panel (a) of Figure 9 plots the expected repayment probability of two arbitrarily chosen risk types ρ1 = 0

and ρ2 = 1 as a function of Etωt+1. It illustrates that EtProbi
t+1, i = 1, 2, increases with Etωt+1 and that ρ2

is “riskier” than ρ1, as it implies a lower expected repayment probability and thus a higher expected default

probability for all ωt+1|t.

Now consider the marginal effect of a change in Etωt+1 on the expected repayment probability of either

risk type. Partially differentiating the CDF in (20) yields

∂EtProbi
t+1

∂Etωt+1
=

∂

∂Etωt+1

{
−F

(
ρi|Etωt+1, Etσ

2
ω,t+1

)}
= f

(
ρi|Etωt+1, Etσ

2
ω,t+1

)
, (21)

where f (•) denotes the PDF of the normal distribution evaluated at ρi. Panel (b) of Figure 9 illustrates that

the sensitivity of EtProb2
t+1 with respect to Etωt+1 is shifted to the right relative to that of EtProb1

t+1.
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Figure 9: Continuous mappings from ωt ∈ R onto Prob1
t ∈ (0, 1) and Prob2

t ∈ (0, 1)

In what follows, we assume that the mapping in (20) and (21) holds ex ante in expected future as well

as ex post in the realized states of the economy, i.e.

Probi
t = 1 − F

(
ρi|ωt, σ

2
ω,t

)
and

∂Probi
t

∂ωt
= f

(
ρi|ωt, σ

2
ω,t

)
. (22)

Recall that, in the partial equilibrium model, default occurs at the risk type level. All firms of type ρ ≤ ωt

become productive and repay the full amount of credit, while all firms of type ρ > ωt “burn down” and

default deterministically on their full amount of credit. If the state of the economy is sufficiently bad and

ωt is sufficiently low, then all firms of type ρ2 default if ωt < ρ2, while all firms of either type default if

ωt < ρ1 < ρ2.

In contrast, the ex-post mapping in equation (22) implies that default occurs at the firm level. Assuming a

continuum of type-1 and type-2 firms with repayment probabilities Prob1
t and Prob2

t , respectively, a fraction

1− Probi
t, i = 1, 2, of firms of either risk type defaults stochastically, while the rest becomes productive and

repays the full amount of credit.8 The ex-post mapping in (20) allows us to model firms with different risk

profiles, while avoiding that an entire type is wiped out in a sufficiently bad state of the economy. For each

ωt, there will be a nonzero mass of firms of either risk type that becomes productive and repays its loans.

8Alternatively, suppose that a single representative firm of each risk type engages in a continuum of investment projects with
different success probabilities. Hence, either firm defaults on part of its loans and repays the rest. In our model, both interpretations
are admissible and observationally equivalent.
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A log-linear approximation of EtProbi
t+1 (and Probi

t) i.t.o. absolute deviations from steady state yields

EtProbi
t+1 − Probi

ss = f
(
ρi|ωss, σ

2
ω,ss

)
· (Etωt+1 − ωss) , i = 1, 2.

Panel (c) of Figure 9 plots the sensitivity of this log-linear approximation at the steady state as a function

of ρ. Note that the sensitivity is low for very risky (ρ >> Etωt+1) and very safe (ρ << Etωt+1) risk types.

This is due to the fact that fluctuations in Etωt+1 around its steady state are largely irrelevant for ρ’s far

away from ωss, as these risk types have virtually zero chance of surviving or defaulting at the margin. If

we considered only risk types ρ < ωss with a steady-state repayment probability larger than 50%, then the

sensitivity of EtProbt+1(ρ) w.r.t. Etωt+1 increases monotonically with ρ. This is consistent with the finding

in López-Salido et al. (2017) that fluctuations in “credit-market sentiment” have a stronger effect on the cost

of borrowing and thus on the investment behavior of firms with relatively lower credit ratings.

Based on the ex-ante expected probabilities of repayment, the equilibrium lending rates of type-i firms

can then be computed as

Ri
t =

Rd
t

EtProbi
t+1

, i = 1, 2,

which pins down the corresponding demand for expected productive capital by either firm type in period t:

EtKi
t+1 = EtProbi

t+1Li
t =

(
α

Ri
t

) 1
1−α

, i = 1, 2.

Note that the aggregate demand for ex-ante bank credit by either firm type in period t is thus given by

Li
t =

EtKi
t+1

EtProbi
t+1

, i = 1, 2,

while the actual amount of ex-post productive capital in period t + 1 depends on the realized probability of

repayment of a firm of type i, i.e.

Ki
t+1 = Probi

t+1Li
t, i = 1, 2.
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The equilibrium conditions of the simplified model with two risk types can be summarized as follows:

Rd
t = Rw, (23)

R1
t =

Rd
t

EtProb1
t+1

, (24)

R2
t =

Rd
t

EtProb2
t+1

, (25)

EtProb1
t+1L1

t =

(
α

R1
t

) 1
1−α

, (26)

EtProb2
t+1L2

t =

(
α

R2
t

) 1
1−α

, (27)

Lt = L1
t + L2

t , (28)

K1
t = Prob1

t L1
t−1, (29)

K2
t = Prob2

t L2
t−1, (30)

Kt = K1
t + K2

t , (31)

Yt =
(
K1

t

)α
+

(
K2

t

)α
, (32)

Yt = Ct + Nt + Rd
t−1Dt−1, (33)

Lt = Nt + Dt, (34)

Nt = (1 − δ)
(
R1

t−1K1
t + R2

t−1K2
t − Rd

t−1Dt−1
)
. (35)

Equations (23)–(35) yield a system of 13 equilibrium conditions in the 13 endogenous variables Ct, Yt, Kt,

K1
t , K2

t , Lt, L1
t , L2

t , Dt, Nt, Rd
t , R1

t , and R2
t , while the ex-ante expected repayment probabilities EtProbi

t+1,

i = 1, 2, are defined in (20). Given exogenous processes for ωt and s̃t, we can investigate the implications of

imperfect information for credit spreads, lending, and output.9 Equation (36) defines the aggregate lending

rate Rt as the average of type-specific interest rates weighted by the respective loan volumes, while equation

(37) defines the aggregate credit spread as the ratio of Rt to the risk-free rate on deposits:

Rt ≡
R1

t L1
t + R2

t L2
t

L1
t + L2

t
, (36)

spreadt ≡
Rt

Rd
t
. (37)

9Appendix B summarizes the log-linearized equilibrium conditions of the simplified model with two risk types in (23)–(35).
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4.3. Reduced Form VAR Representation of the Model

Given our assumptions about the exogenous processes, the reduced-form VAR(1) representation of the

model takes the following form:

ωt = AωLt−1 + εωt , (38)

Lt = BLLt−1 + εL
t , (39)

where the scalar coefficients Aω and BL represent convolutions of the model’s parameters, while εωt and εL
t

are mean-zero reduced-form disturbances. The details of the derivation can be found in Appendix C.

From the first equation in (38), it is obvious that past lending helps in predicting current values of the

fundamental ωt. The reason is that ex-ante aggregate lending reflects the bank’s additional information

about the persistent component of the fundamental process, as it observes the informative public signal s̃t.

The second equation in (39) shows that ex-ante credit follows an AR(1)-process, even though the decision

problem of the bank is static and there are no frictions inducing this kind of backward-looking dynamic.

Note that the baseline model features no investment adjustment costs and assumes perfect depreciation of

the productive capital stock. The persistence in ex-ante credit arises solely from the persistence in bank

expectations about the state of the economy.

Finally, the VAR representation illustrates that it is not possible to recover the three structural shocks

(i.e. “trend”, “cycle’, and noise shocks) from two reduced-form innovations. This non-invertibility problem

is due to the informational friction in financial intermediation and common to this class of models with noisy

information.10

4.4. Moment-Based Identification

The system in (7) implies that the fundamental process ωt, which represents the sum of an AR(1) and

an i.i.d. process, can be written as an ARMA(1,1) process. In what follows, we use these restrictions and

moments in the data to identify the structural shocks of interest. For this purpose, we start by estimating an

ARMA(1,1) model on a proxy for ωt:

ωt = ρωωt−1 + εωt − θωε
ω
t−1.

10See Blanchard et al. (2013) for a more comprehensive discussion.
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The ARMA(1,1) representation of the structural model in (7) then implies the following conditions:

σ2
ε =

θω
ρω
,

σ2
e = 1 − 2θωρω + θ2

ω −
(
1 − ρ2

ω

)
.

The above conditions identify the variances of cycle and trend shocks for given estimates of the ARMA(1,1)

coefficients.11 Note that, ceteris paribus, the variance of the cycle shock increases in the coefficient of the

MA component and decreases in the coefficient of the AR component of the fundamental process. Given

the recovered estimates of cycle and trend shock, we can identify the variance of noise shocks.

In order to identify the variance of the noise shock, we exploit the correlation between the reduced-form

residuals of the VAR representation of the structural model in the previous section. Note that there is a

monotonic relationship between this correlation and the variance of noise shocks. To help the intuition,

consider first the limiting case, where the variance of noise shocks goes to infinity. In this case, the reduced-

form VAR representation simplifies to

Lt = ρνLt−1 + ut,

ωt = ρνωt−1 + ut,

and the contemporaneous correlation of the reduced-form residuals reaches its upper bound of unity.

On the contrary, the lower bound of this correlation obtains, when the variance of noise shocks decreases

to zero. The corresponding reduced-form VAR representation is given by

Lt = ρνLt−1 + BLet,

ωt = AωLt−1 + et + εt,

where B = α
1−αρνζ and the correlation of the reduced-form residuals is equal to 0 < 1√

1+σ2
ε /σ

2
e

< 1.

For intermediate cases, the correlation of the reduced-form residuals is monotonically increasing in the

variance of the noise shock, implying a non-trivial learning problem of economic agents.

11In order to avoid scaling effects on the recovered estimates of σ2
ε and σ2

e , we standardize the empirical counterpart of ωt to
have zero mean and unit variance.
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To illustrate this identifying strategy, we use TFP growth as a proxy for ωt (see Fernando, 2014) and

Gilchrist and Zakrakšek’s (2012) excess bond premium (EBP) as a proxy for the credit spread, i.e. the bank’s

relevant choice variable in the model. Note that the reduced-form VAR representation of the spread is the

same as for ex-ante credit, except for the sign of the residual correlation coefficient. The reason is that a

higher expected value of ωt+1 is associated with higher ex-ante credit volumes but a lower credit spread.

Using quarterly data of TFP growth and the EBP during 1982–2017, we find that the fundamental

process exhibits considerable persistence (ρω = 0.78), while the coefficient of the MA component is quanti-

tatively similar (θω = 0.71). These estimates imply that σ2
ε = 0.86 and σ2

e = 0.05. The residual correlation

of the reduced-form VAR representation equals −0.34, which corresponds to a variance of the noise shock

equal to σ2
ε = 0.04. Accordingly, the variance of cycle shocks is an order of magnitude larger than that the

noise shock, suggesting a potential role of noise shocks for credit spreads and volumes in our model. While

this identification is straightforward and transparent, it relies on an empirical proxy for ωt, which is difficult

to find. Moreover, moment-based identification does not exploit all the theoretical restrictions implied by

the model. For this reason, we turn to a maximum-likelihood identifying strategy in what follows.

4.5. Estimation of the Simplified Model

In order to identify the structural shocks in (7) and (8) and to quantify their importance for aggregate

fluctuations, we estimate the simplified version of the general equilibrium model with two risk types while

allowing for imperfect information about the underlying state of the economy.12 The aim of this section

is to quantify the role of noise shocks in the financial cycle by matching the general equilibrium model

to economic data. For this purpose, we draw on the approach to estimating DSGE models with a signal

extraction problem proposed by Blanchard et al. (2013).

4.5.1. Equivalent full information representation

Suppose that the simplified general equilibrium model can be expressed in terms of the following system

of stochastic difference equations:

DEt [xt+1] + Fxt + Gxt−1 + Myt + NEt
[
yt+1

]
= 0,

12In contrast to the dynamic stochastic general equilibrium (DSGE) exercise in Blanchard et al. (2013), as a starting point, we
allow only for the three structural shocks in Section 3 rather than adding additional shocks that are standard in the DSGE literature.
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where xt denotes a vector of endogenous state variables, D,F,G,M, and N are parameter matrices, and the

unobservable exogenous state vector st only enters the system through the observable vector yt.13 Suppose

further that the model has the unique stable solution

xt = Oxt−1 + Pst + Rst|t,

where, as in Section 3, st|t denotes the agents’ expectation of the state vector conditional on all information

available in period t, i.e. xt|t ≡ E
[
st|yt, yt−1, . . .

]
, and the matrices O,P, and R can be found by solving

DO2 + FO + G = 0, (DO + F) P + M = 0, (DO + F) R + [D (PZ + R) + NZ] T = 0,

where the matrices Z and T are defined in Section 3. While the second and third equation are linear in P and

R and thus straightforward to solve, Uhlig (1995) provides solution techniques for the first equation in O.

Making use of the Kalman filter updating and forecasting expressions for the state vector st in (A.1) and

(A.2), respectively, we can express the joint dynamics of st|t and the vector of observables yt as

st|t = Tst−1|t−1 + K
(
yt − yt|t−1

)
= Tst−1|t−1 + K

(
yt − ZTst−1|t−1

)
,

yt = ZTst−1|t−1,

where K ≡ Σt|t−1Z′
(
ZΣt|t−1Z′ + H

)−1 denotes the Kalman filter gain and Σt|t−1 ≡ Vart−1 (yt) the variance-

covariance matrix of yt conditional on the information available in period t.

Suppose that the latter can be factorized as Σt|t−1 = FF′ for some matrix F and consider the model

ŝt = Tŝt−1 + KFv̂t,

yt = ZTŝt−1 + Fv̂t,
(40)

where v̂t is an m-dimensional vector of mutually independent standard normal shocks. Lemma 2 in Blan-

chard et al. (2013) states that, identifying st with st|t and vt with yt −ZTst−1|t−1, the original signal extraction

model is observationally equivalent to the model in (40) with the assumption that the agent perfectly ob-

13This reflects the assumption that the information set of the representative agent contains past and current values of yt and xt

rather than current and past values of st (see Blanchard et al., 2013).
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serves ŝt and v̂t for any matrix F. Hence, we can estimate the equivalent full information model subject to a

restriction on the correlation matrix of shocks and recover the parameters of the signal extraction model.

4.5.2. Bayesian maximum likelihood estimation

In the absence of additional shocks, the equivalent full information representation of the simplified

general equilibrium model with imperfect information in (40) allows for m = 2 mutually independent shock

series. Hence, we estimate the parameters of the exogenous processes in (7) and (8) by matching aggregate

output, Yt, and the aggregate spread between lending rates and the risk-free rate on deposits, spreadt, to their

empirical counterparts. For the log-difference of aggregate output, we use the seasonally adjusted quarter-

on-quarter growth rate of U.S. real GDP growth. For spreadt, we employ the difference between Moody’s

seasoned Baa corporate bond yield and the yield on 10-year treasury constant maturity.14 The variables are

transformed as proposed by Pfeifer (2017).

We use Dynare to solve and estimate the model by maximizing the likelihood function at the posterior

mode for the vector of parameter values. Following Blanchard et al. (2013), the impulse response functions

of the economic variables to the n = 3 shocks in the original signal extraction model can then be backed out

from the impulse responses to the m = 2 mutually orthogonal shocks in the vector v̂t of the equivalent full

information representation in (40). While we estimate the parameters of the exogenous processes in (7) and

(8), we calibrate the two risk types to ρ1 = −3 and ρ2 = −1, implying steady-state repayment probabilities

of Prob1
ss = 0.99 and Prob2

ss = 0.79 and sensitivities of f
(
ρ1|ωss, σ

2
ω

)
= 0.016 and f

(
ρ2|ωss, σ

2
ω

)
= 0.234.

4.5.3. Bayesian priors and parameter estimates

Table 2 reports the posterior mode of the parameter estimates in equations (7) and (8) as well as the type

and mean of the corresponding Bayesian priors. The latter are standard in the DSGE literature. We assume

a beta-distributed prior with a mean of 0.6 and a standard deviation of 0.2 for both ρν and ρη, while we set

the means of the inverse gamma-distributed priors for σe, σε , and σε to 0.5, 1.0, and 1.0, respectively, and

the corresponding standard deviations to unity.

We find substantial serial correlation in the estimated persistent component νt and virtually zero serial

correlation in the estimated transitory component ηt. While the posterior mode of the coefficient ρν is equal

to 0.7717 and highly statistically significant, the posterior mode of ρη hits its imposed lower bound of 0.01

14In Appendix D, we show that the parameter estimates and results discussed below are robust to using Gilchrist and Zakrakšek’s
(2012) EBP as a proxy for spreadt.
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Table 2: Bayesian priors and maximum likelihood posterior estimates of the parameters in equations (7) and (8)

Parameter Prior type Prior mean Prior s.d. Posterior mode Posterior s.d.
ρν beta 0.600 0.200 0.7717 0.0331
ρη beta 0.600 0.200 0.0100 0.0006
σe inverse gamma 0.500 1.000 0.0670 0.0058
σε inverse gamma 1.000 1.000 1.2191 0.0836
σε inverse gamma 1.000 1.000 0.4683 0.0831

from above. As a consequence, the effect of shocks to the persistent component on the observable ωt will

be qualitatively different from the effect of shocks to the transitory component, as illustrated by the impulse

response functions in Figures 5 and 6.

Lines 3–5 in Table 2 indicate that non-fundamental noise shocks to the publicly observable signal s̃t

are more volatile than shocks to the persistent component νt, yet less volatile than shocks to the transitory

component ηt. Note that a larger estimate of σε relative to σε implies that s̃t is a relatively more precise

indicator of the unobservable persistent component than ωt, which is “polluted” by shocks to the transitory

component. As a result, a rational agent puts some faith in the public signal, which slows down the speed of

learning and amplifies the effect of noise shocks on the bank’s expectations about the state of the economy

in period t + 1 and thus on its lending behavior.

4.6. Impulse Response Functions

It is straightforward to solve the simplified general equilibrium model and compute impulse response

functions for the variables of interest. In what follows, we set α = 0.35 and Rw = β−1
w = 1.01, as in our partial

equilibrium model, while 10% of the financial sector’s net worth is consumed each period, i.e. δ = 0.1. The

volatility of shocks to the persistent component, shocks to the transitory component, and shocks to the public

signal are taken from our parameter estimates in Table 2, i.e. σe = 0.0670, σε = 1.2191, and σε = 0.4683.

In the exogenous AR(1) processes for νt and ηt, we set ρν = 0.7717 and ρη = 0.01.

4.6.1. “Trend” shocks

Figure 10 plots the impulse responses to a positive one-standard-deviation innovation in the persistent

component for the simplified general equilibrium model with two borrower types and imperfect information

(“Kalman”) against its counterpart with full information (“FIRE”).15 In period 1, νt and thus both ωt and s̃t

15Re-estimating the model with full information (i.e. σε = 0) yields ρν = 0.2874, ρη = 0.01, σe = 0.0727, and σε = 1.0242.
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Figure 10: Impulse responses to a shock in the persistent component based on the simplified general equilibrium model in (23)–(35)

increase by the full amount of the “trend” shock et, while the increase in the Kalman filter nowcast of the

persistent component depends on the information regime. With full information, νt|t rises one-for-one with

the observables. With imperfect information, νt|t rises by a fraction of et, as economic agents assign most of

the probability mass to states where the observed changes in ωt and s̃t are driven by a shock in the transitory

or noise component rather than by a “trend” shock.16

The increase in νt|t translates into an increase in the expected repayment probabilities for both risk types,

EtProbi
t+1, i = 1, 2, and thus a decrease in the respective credit spread. The size of these reductions and

the corresponding increase in the demand for capital by both risk types and ex-ante aggregate credit again

reflects the information regime. Note that shocks to the persistent component are fundamental in the sense

that they affect the state ωt, which determines the default probability of each firm type. Regardless of the

information regime, the ex-post aggregate capital stock therefore increases on impact, as a smaller fraction

of firms of both types defaults in response to a “trend” shock.

The surprise increase in the productive capital stock translates directly into higher output, while the in-

creased ex-post repayment of credit raises bank net worth on impact. The subsequent hump-shaped response

16Recall that the Kalman filter nowcast of the persistent component follows from equation (10) as a projection on the period-t
realizations of the observable variables ωt and s̃t.
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Figure 11: Impulse responses to a shock in the transitory component based on the simplified general equilibrium model in (23)–(35)

of bank net worth is reminiscent of the hump-shaped response of entrepreneurial net worth to fundamental

shocks in Bernanke et al. (1999). As a consequence, banks can rely on a higher stock of net worth rather

than on external funding in order to satisfy the increased demand for credit, and bank deposits fall short of

their steady-state value. With full information, the adjustment is monotonic rather than hump-shaped.

4.6.2. “Cycle” shocks

Consider now the impulse responses to a positive one-standard-deviation shock in the transitory com-

ponent with imperfect information (“Kalman”) and with full information (“FIRE”) in Figure 11. Given our

assumption that ρη = 0.01 in (7), ωt increases in period 1 by the full amount of the shock and virtually falls

back to zero in period 2. In contrast, the unobservable persistent component νt and the observable signal s̃t

remain equal to their steady-state values of zero throughout.

While νt and ηt are separately observable under full information, uncertainty about the origin of the

observed increase in ωt implies that the Kalman filter nowcast of the persistent component, νt|t, increases,

as agents attribute part of the increase in ωt to the persistent component. As a result, the equilibrium credit

spread decreases and the ex-ante aggregate demand for credit increases in the impact period under FIRE.

When νt and ηt are not separately observable, the decrease in the credit spread and the increase in ex-ante
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Figure 12: Impulse responses to a shock in the noise component based on the simplified general equilibrium model in (23)–(35)

aggregate credit persist even after the fundamental source of the disturbance has all but vanished in period

2, reflecting higher expected repayment probabilities for both risk types.

Due to the fundamental nature of the shock, reduced default of firms implies a higher ex-post aggregate

stock of productive capital and a higher economy-wide output level. Regardless of the information regime,

ex-post default decreases in the period of the shock, thus raising bank net worth on impact. After the initial

increase, bank net worth monotonically converges to its steady-state value from above. Due to the ample

supply of internal funds, the bank relies less on external funding in order to satisfy the increased demand for

ex-ante credit. Hence, bank deposits decrease both with imperfect information and under FIRE.

4.6.3. Noise shocks

While the impulse responses in Figures 10 and 11 arise from shocks to the fundamental determinants of

credit risk, pure noise shocks can also affect the bank’s expectations and lending behavior in the presence of

imperfect information. Figure 12 plots the impulse responses to a positive one-standard-deviation innovation

in the public signal s̃t without any change in fundamentals with imperfect information (“Kalman”) and full

information (“FIRE”).

Although the observable ωt and its latent persistent component νt are not affected, the change in the
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signal induces rational agents to revise their Kalman filter nowcast of the “trend” component, νt|t, upwards

under imperfect information, whereas νt and ηt are separately observable under full information. While the

“objective” repayment probability of either risk type is therefore unchanged, the equilibrium credit spread

decreases on impact before monotonically converging back to its steady-state value from below, while the

impulse response function of ex-ante aggregate credit follows a similar but inverted pattern under imperfect

information. Note that the higher sensitivity of the relatively riskier firm type with respect to Etωt+1 in (21)

implies that the bank lends disproportionately to the second risk type. As a consequence, the riskiness of the

bank’s loan portfolio, measured as the fraction of credit to the riskier type increases in response to a pure

noise shock. While this holds true also in response to both fundamental shocks, as illustrated in Figures 10

and 11, we show below that noise shocks are an important driver of this “portfolio rebalancing”.

In response to a non-fundamental noise shock, ex-post default, the aggregate stock of productive capital,

and output are unaffected on impact. Only after the increase in ex-ante aggregate credit in period 1 translates

into higher ex-post aggregate capital in period 2, both capital and output increase slightly under imperfect

information, whereas nothing happens under FIRE. Note that the increase in ex-post aggregate capital is

less pronounced than the expansion of ex-ante aggregate bank lending, leading to an increase in ex-post

aggregate default in line with Figure 8. At the same time, the increase in the aggregate default rate plotted

in Figure 12 reflects the shift in the bank’s loan portfolio towards the riskier firm type.

This increase in the ex-post default rate cuts into the bank’s net worth, which follows a U-shaped pattern

and converges back to its steady-state value from below. The loss of internal funds induces the bank to draw

on additional external funding in order to satisfy the increased demand for ex-ante aggregate credit. Hence,

bank deposits increase under imperfect information. This is in contrast with the findings in Blanchard et al.

(2013), where consumption increases in response to a pure noise shock. The reason is that, in our model,

the signal extraction problem has to be solved by financial intermediaries rather than the household sector,

implying a qualitatively different propagation of noise shocks.

4.7. Forecast Error Variance Decomposition

Table 3 reports the forecast error variance (FEV) contribution of the three shocks for selected variables

from the simplified general equilibrium model with two risk types and imperfect information in (23)–(37).

Consistent with our findings for the partial equilibrium investment model, the first two panels illustrate that

noise shocks do not contribute to the FEV of ωt, while shocks to the transitory component do not affect s̃t.
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Table 3: Forecast error variance decomposition of selected variables based on the model in (23)–(37)

Omega Signal Kalman nowcast
Quarter Trend Cycle Noise Trend Cycle Noise Trend Cycle Noise

1 0.003 0.997 0.000 0.020 0.000 0.980 0.023 0.124 0.853
4 0.006 0.994 0.000 0.042 0.000 0.958 0.097 0.115 0.789
8 0.007 0.993 0.000 0.047 0.000 0.953 0.153 0.108 0.740
20 0.007 0.993 0.000 0.048 0.000 0.952 0.172 0.105 0.723

Spread Ex-ante credit Ex-post default
Quarter Trend Cycle Noise Trend Cycle Noise Trend Cycle Noise

1 0.018 0.558 0.424 0.018 0.558 0.424 0.003 0.997 0.000
4 0.080 0.391 0.529 0.080 0.391 0.529 0.006 0.994 0.000
8 0.126 0.358 0.516 0.126 0.358 0.516 0.007 0.993 0.000
20 0.141 0.351 0.508 0.141 0.351 0.508 0.007 0.993 0.000

At the same time, both cycle and noise shocks contribute to the FEV of the Kalman filter nowcast of the

persistent component, where the intuition follows from equation (10). Due to the large estimated variance

of cycle shocks in Table 2, ωt represents a comparatively noisy measure of the persistent component that

is largely disregarded by economic agents, while a higher weight is placed on the relatively more precise

signal s̃t. As a result, non-fundamental noise shocks to the public signal enter the Kalman filter nowcast of

νt with a large weight and contribute thus more to its FEV.

Turning to selected economic variables in the second line of Table 3, we find that the large contribution

of noise shocks to the Kalman filter nowcast of the persistent component translates into a contribution of

42–53% in the FEV of the aggregate credit spread defined in equation (37). Note also that the contribution of

shocks to the persistent component is monotonically increasing, while that of shocks to the transitory com-

ponent is monotonically decreasing in the forecast horizon. The relative importance of the two fundamental

shocks is largely determined by our estimates of σe and σε .

Due to the assumption of a constant interest rate on deposits, the FEV of the credit spread is inherited

by the interest rates on loans to either risk type, the corresponding equilibrium credit volumes, and thus the

bank’s portfolio risk. As a result, noise shocks feature a large contribution to the FEV of ex-ante aggregate

credit, whereas they have little explanatory power for fluctuations in ex-post default, which is determined

almost exclusively by shocks to the transitory component. This is due to the comparatively larger estimated

variance of the latter, which implies that ex-post economic variables such as the capital stock and the default

rate, for example, respond strongly to the fundamental cycle shocks on impact (see Figure 11).
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Figure 13: Historical fluctuations of variables not used when estimating the simplified general equilibrium model in (23)–(35)

4.8. External Validity

In order to check for external validity of the estimated simplified general equilibrium model, Figure 13

plots the delinquency rate on all loans for all U.S. commercial banks as well as the cumulated Blue Chip

nowcast errors and revisions against their model counterparts, i.e. the average default rate on loans to both

firm types, the cumulated Kalman filter nowcast errors, and the cumulated Kalman filter nowcast revisions.

Note that none of these variables was used when estimating the model in (23)–(35).

Figure 13 illustrates that the general equilibrium model does a surprisingly good job in replicating the

historical fluctuations of these additional variables during our sample period. In particular, it reproduces the

downward trend in the delinquency rate between 1991 and 2007 as well as the subsequent steep increase

during the financial crisis. It replicates the steady decrease and increase in cumulated nowcast errors before

2000 and after 2005, respectively. Finally, it reproduces the upward trend in cumulated nowcast revisions

between 1991 and 2000 as well as the subsequent U-shape and the sudden drop in 2008.

The model fails to reproduce the decrease in delinquency rates and the relatively high level of cumulated

Blue Chip nowcast revisions after 2010 — a period characterized by massive interference of policy makers

in the financial sector and protracted non-standard monetary policy. Albeit, none of this is accommodated

in our simple model.
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5. Concluding Remarks

In this paper, we investigate whether imperfect information of financial intermediaries about the state

of the economy can be a source of lending cycles. We start by analyzing a partial equilibrium neoclassical

investment model, where a competitive bank must solve a signal extraction problem in order to distinguish

between fundamental components that determine the underlying state of the economy and non-fundamental

“noise” shocks. We find that credit booms can arise from informational frictions and that these credit booms

are associated with higher ex-post default relative to a full-information and rational expectations benchmark.

In order to quantify the role of noise shocks in aggregate fluctuations, we embed the neoclassical invest-

ment model in a general equilibrium model with two risk types. The partial equilibrium model is closed

by assuming that bank lending is funded by the bank’s accumulated net worth and by external funds in the

form of risk-free deposits by a risk-neutral foreign depositor at the world interest rate. We solve and esti-

mate the model using Bayesian techniques and an equivalent full information representation of the general

equilibrium model with imperfect information proposed by Blanchard et al. (2013). Calibrating the model’s

driving processes along the lines of our empirical estimates, we find that noise shocks contribute up to 50%

to the forecast error variance of the spread between Moody’s seasoned Baa corporate bond yield and the

yield on 10-year treasury constant maturity at the 5-year horizon.

The current modeling framework allows us to isolate and quantify the effects of imperfect information in

the banking sector on macroeconomic outcomes. An interesting extension would be to study the interaction

of noisy information with financial frictions, such as balance sheet constraints of financial intermediaries.

Our model is able to reproduce the historical fluctuations in average forecast errors and revisions based on

the Blue Chip consensus forecast. Another relevant extension would therefore be to study the implications of

financial intermediaries’ expectations formation process at the individual level. These questions are beyond

the scope of the current paper and left for future research.
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Appendix A. Kalman Filter

Solving equation (7) for the transitory component ηt and substituting into ηt = ρηηt−1 + εt, we obtain

ωt = νt + ρη (ωt−1 − νt−1) + εt,

s̃t = νt + εt,

νt = ρννt−1 + et,

where the first two represent measurement equations, while the third represents the transition equation of νt.

Defining the vector of states st ≡ [νt, νt−1]′, we can write the above system in matrix notation as

yt = Zst + Byt−1 + ut,

st = Tst−1 + vt,

where yt ≡

 ωt

s̃t

, Z ≡

 1 −ρη

1 0

, B ≡

 ρη 0

0 0

, ut ≡

 εt

εt

, T ≡

 ρν 0

1 0

, and vt ≡

 et

0

.
From the above system of equations, it is straightforward to derive Kalman filter updating expressions

for the state vector and its variance conditional on information available at time t, st|t respectively Σt|t:

st|t = st|t−1 + Σt|t−1Z′
(
ZΣt|t−1Z′ + H

)−1 (
yt − yt|t−1

)
,

Σt|t = Σt|t−1 − Σt|t−1Z′
(
ZΣt|t−1Z′ + H

)−1 ZΣt|t−1,
(A.1)

where the corresponding Kalman filter forecasting expressions are given by

st+1|t = Tst|t,

Σt+1|t = TΣt|tT′ + Q, (A.2)

yt+1|t = Zst+1|t + Byt,

and the covariance matrices of the disturbance term vectors ut and vt, respectively, are given by

H =

 σ
2
ε 0

0 σ2
ε

 , Q =

 σ
2
e 0

0 0

 .
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Note that the Kalman filter gain, K ≡ Σt|t−1Z′
(
ZΣt|t−1Z′ + H

)−1, is increasing inσe while it is decreasing

in σε and σε, i.e., the extent to which the bank optimally updates its nowcast of st|t depends on the so-called

“signal-to-noise ratio”.

Appendix B. Log-Linearized General Equilibrium Model with Two Risk Types

Assuming that Rd
t = Rw ∀t, it is straightforward to log-linearize the equilibrium conditions in equations

(23)–(37) around the non-stochastic steady state:

R̂d
t = 0, (B.1)

R̂1
t = R̂d

t − EtP̂rob
1
t+1, (B.2)

R̂2
t = R̂d

t − EtP̂rob
2
t+1, (B.3)

EtP̂rob
1
t+1 + L̂1

t = −
1

1 − α
R̂1

t , (B.4)

EtP̂rob
2
t+1 + L̂2

t = −
1

1 − α
R̂2

t , (B.5)

LssL̂t = L1
ssL̂

1
t + L2

ssL̂
2
t , (B.6)

K̂1
t = P̂rob

1
t + L̂1

t−1, (B.7)

K̂2
t = P̂rob

2
t + L̂2

t−1, (B.8)

KssK̂t = K1
ssK̂

1
t + K2

ssK̂
2
t , (B.9)

YssŶt = α
(
Y1

ssK̂
1
t + Y2

ssK̂
2
t

)
, (B.10)

YssŶt = CssĈt + NssN̂t + Rd
ssDss

(
Rd

t−1 + Dt−1
)
, (B.11)

LssL̂t = DssD̂t + NssN̂t, (B.12)

NssN̂t = (1 − δ)
[
R1

ssK
1
ss

(
R1

t−1 + K1
t

)
+ R2

ssK
2
ss

(
R2

t−1 + K2
t

)
− Rd

ssDss
(
Rd

t−1 + Dt−1
)]
,(B.13)

Rss
(
L1

ssL̂
1
t + L2

ssL̂
2
t

)
= R1

ssL
1
ss

(
R̂1

t + L̂1
t

)
+ R2

ssL
2
ss

(
R̂2

t + L̂2
t

)
− Rss

(
L1

ss + L2
ss

)
R̂t, (B.14)

̂spreadt = R̂t − R̂d
t . (B.15)

where Xss denotes the steady-state value of variable X and X̂t the percentage deviation of X in period t from

its steady-state value, i.e. X̂t ≡ (Xt − Xss) /Xss.
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Appendix C. Reduced-Form VAR Representation of the Model

Assume — without loss of generality — that the economy is populated by borrowers of one risk type.

The purpose of this assumption is to render the algebra more transparent, while it can be relaxed to two or

more risk types without affecting our result qualitatively. With just one risk type, the lending rate Rt and the

lending volume Lt are determined by the following log-linearized equations:

Rt = −EtProbt+1,

EtProbt+1 + Lt = −
1

1 − α
Rt.

Substituting for the lending rate, we obtain

Lt =
α

1 − α
EtProbt+1,

which can be rewritten as

Lt =
α

1 − α
ζρννt|t, (C.1)

where ζ denotes the sensitivity of the lending rate with respect to the observable state of the economy, ωt.

In order to arrive at a reduced-form equation for ωt, consider

ωt − ρνωt−1 = νt + εt − ρν (νt−1 + εt−1) ,

⇔ ωt − ρνωt−1 = et + εt − ρνεt−1,

⇔ ωt − ρνωt−1 = et + εt − ρνωt−1 + ρννt−1.

Rearranging and taking expectations as of period t − 1 yields

Et−1ωt = ρννt−1|t−1.

Using (C.1), we can rewrite the above expression as

ωt = AωLt−1 + εωt , (C.2)
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where Aω ≡ 1−α
αζ .

In order to arrive at a reduced-form representation of Lt, recall that the optimal nowcast implied by the

Kalman filter in equation (10) equals

νt|t = (1 − κ1 − κ2) ρννt−1|t−1 + κ1ωt + κ2 s̃t, (C.3)

where κ1 ≡
σ2
νσ

2
ε

σ2
νσ

2
ε+σ

2
νσ

2
ε+σ

2
εσ

2
ε
, κ2 ≡

σ2
νσ

2
ε

σ2
νσ

2
ε+σ

2
νσ

2
ε+σ

2
εσ

2
ε
, and σ2

ν implicitly solves σ2
ν = ρ2

ν

(
1
σ2
ε

+ 1
σ2
ε

+ 1
σ2
ν

)−1
+ σ2

e .

Combining (C.1) and (C.3), we obtain

Lt =
αζ

1 − α
ρν

[
(1 − κ1 − κ2) ρννt−1|t−1 + κ1ωt + κ2 s̃t

]
.

Substituting for ωt and s̃t, rearranging, and taking expectations as of period t − 1 yields

Et−1Lt =
αζ

1 − α
ρ2
ννt−1|t−1,

which can be rewritten as

Lt = BLLt−1 + εL
t , (C.4)

where BL ≡ ρν. Accordingly, (C.2) and (C.4) yield a reduced-form VAR representation in the state of the

economy ωt and the ex-ante credit volume Lt.

Appendix D. Robustness of Results

In what follows, we show that the results in Section 4 are robust to replacing the difference between

Moody’s seasoned Baa corporate bond yield and the yield on 10-year treasury constant maturity by Gilchrist

and Zakrakšek’s (2012) excess bond premium (EBP) as an empirical proxy for spreadt in the model.

Table D.1: Bayesian priors and maximum likelihood posterior estimates of the parameters in equations (7) and (8)

Parameter Prior type Prior mean Prior s.d. Posterior mode Posterior s.d.
ρν beta 0.600 0.200 0.7281 0.0391
ρη beta 0.600 0.200 0.0100 0.0005
σe inverse gamma 0.500 1.000 0.0711 0.0063
σε inverse gamma 1.000 1.000 1.2287 0.0826
σε inverse gamma 1.000 1.000 0.4281 0.0740
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Figure D.1: Impulse responses to a shock in the transitory component based on the simplified general equilibrium model in (23)–
(35)

Table D.1 reports the type and mean of the Bayesian priors, which are identical to those in Table 2, as

well as the posterior mode of the parameters in (7) and (8) and illustrates that the parameter estimates are

very similar to those obtained for the Baa–10YT spread.

Figures D.1–D.3 plot the impulse responses to a positive one-standard-deviation in the persistent com-

ponent, the transitory component, and the public signal, respectively, for the simplified general equilibrium

model with two borrower types and imperfect information (“Kalman”) against its counterpart with full in-

formation (“FIRE”).17 A comparison with Figures 10–12 reveals that the impulse response functions are

qualitatively identical and quantitatively very similar for either empirical proxy for spreadt.

As a consequence, one would expect that the model estimated on real GDP growth and the EBP also has

similar implications for the forecast error variance (FEV) decomposition. Indeed, the contribution of each

structural shock to the FEV in Table D.2 is virtually identical to the respective values in Table 3. Whether we

use the Baa spread or the EBP as an empirical proxy for spreadt, the simplified model with two risk types

in (23)–(35) implies that noise shocks contribute more than 50% to the FEV of the credit spread, ex-ante

credit volumes, and the riskiness of the bank’s portfolio.

17Re-estimating the model with full information for the EBP yields ρν = 0.2519, ρη = 0.01, σe = 0.0767, and σε = 1.0501.
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Figure D.2: Impulse responses to a shock in the transitory component based on the simplified general equilibrium model in (23)–
(35)
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Figure D.3: Impulse responses to a shock in the noise component based on the simplified general equilibrium model in (23)–(35)
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Table D.2: Forecast error variance decomposition of selected variables based on the model in (23)–(37)

Omega Signal Kalman nowcast
Quarter Trend Cycle Noise Trend Cycle Noise Trend Cycle Noise

1 0.003 0.997 0.000 0.027 0.000 0.973 0.030 0.104 0.866
4 0.007 0.993 0.000 0.051 0.000 0.949 0.111 0.095 0.794
8 0.007 0.993 0.000 0.055 0.000 0.945 0.155 0.090 0.754
20 0.007 0.993 0.000 0.055 0.000 0.945 0.164 0.089 0.746

Spread Ex-ante credit Ex-post default
Quarter Trend Cycle Noise Trend Cycle Noise Trend Cycle Noise

1 0.023 0.542 0.435 0.023 0.542 0.435 0.003 0.997 0.000
4 0.090 0.390 0.520 0.090 0.390 0.520 0.006 0.994 0.000
8 0.125 0.366 0.509 0.125 0.366 0.509 0.007 0.993 0.000
20 0.131 0.363 0.506 0.131 0.363 0.506 0.007 0.993 0.000
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