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1. Motivation

DURING the last decades, the log-optimal portfolio (LOP) has become increasingly
important. One can find a significant number of publications related to the LOP—or to
the growth-optimal portfolio (GOP), which is often treated synonymously. The reader

can find a huge number of articles in MacLean et al. (2011). For a nice overview on the subject
matter see Christensen (2005). In spite of some controversial discussion (Merton and Samuelson,
1974) it cannot be denied that the LOP has a number of nice and beautiful properties. For
example, it is asymptotically optimal among all portfolios that share the same constraints on the
portfolio weights (Cover and Thomas, 1991, Chapter 15). Moreover, the LOP can be considered
a discrete-time approximation of the GOP, which serves as a numéraire portfolio and thus plays
a major role in financial mathematics (Karatzas and Kardaras, 2007, Platen and Heath, 2006). In
fact, the GOP provides a link between financial mathematics, neoclassical finance, and financial
econometrics (Frahm, 2016). Hence, the LOP is of particular interest for a variety of reasons.

Here, I would like to investigate the statistical properties of LOP estimators. To the best of my
knowledge, this is not done so far in the literature. I choose the standard estimator for the LOP,
i.e., the best constant re-balanced portfolio (BCRP), and I propose a quadratic approximation of
the BCRP, namely the mean-variance estimator (MVE). I analyze some small-sample and the
large-sample properties of the BCRP and the MVE. By contrast, I do not discuss the question of
whether or not the BCRP or the MVE outperforms any other investment strategy. That topic
seems to be well-investigated and so I would like to refer to the aforementioned publications.
In particular, I do not compare the BCRP and the MVE with one another in order to clarify
whether maximizing the logarithmic utility or the mean-variance objective function is more
preferable (Hakansson, 1971). Instead, I use the MVE only in order to approximate the BCRP.
Correspondingly, the mean-variance optimal portfolio (MVOP) does not end in itself. In this
work, it just represents a (quadratic) approximation of the LOP.

The main conclusions of this work are as follows:

(i) The MVE provides a very good approximation of the BCRP if re-balancing takes place on a
daily basis. The numerical implementation of the MVE is quite easy and the corresponding
algorithm is very fast even if the number of dimensions is high.

(ii) In finite samples one typically overestimates the expected out-of-sample log-return on the
BCRP and even the expected log-return on the LOP. Similar statements hold true for the
expected out-of-sample performance of the MVE and the performance of the MVOP.

(iii) The BCRP exists and is unique under mild regularity conditions. Moreover, it is strongly
consistent, which holds true also for the expected out-of-sample log-return on the BCRP
and its in-sample average log-return. Similar results are obtained for the MVE.

(iv) Although both the BCRP and the MVE are affected by short-selling constraints they are
√

n -consistent. The asymptotic results can be used in order to construct hypothesis tests
and to compute confidence regions.
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(v) Due to the constraints on the portfolio weights, the asymptotic results are inaccurate in
most practical applications. Nonetheless, a finite-sample correction exists and it substan-
tially improves the large-sample approximation of the MVE (and thus of the BCRP).

(vi) However, the impact of estimation risk that comes from estimating expected asset returns
is tremendous in most real-life situations. This problem is so serious that estimating the
LOP becomes a futile endeavour if we have no prior information.

The rest of this work is organized as follows: In Section 2 I make the basic assumptions and
explain the mathematical notation. Section 3 contains some elementary results and provides
a simple characterization of the LOP. In Section 4 I derive the small-sample and large-sample
properties of the BCRP, which includes its existence, uniqueness, and consistency. This section
contains also the asymptotic distribution for the BCRP. The reader can find the corresponding
results for the MVE in Section 5. In Section 6 I point towards some computational issues that
are related to the BCRP and demonstrate the finite-sample correction for the MVE. Section 7
concludes this work. Finally, the appendix contains an important but quite tedious derivation.

2. Basic Assumptions and Notation

Throughout this work, N denotes the set of positive integers, i.e., N :=
{

1, 2, . . .
}

, and the
symbol “log” stands for the natural logarithm. The symbol 0 denotes a vector of zeros and 1

is a vector of ones. The dimensions of 0 and 1 should always be clear from the context. Any
tuple x = (x1, x2, . . . , xd) ∈ Rd is understood to be a column vector and x′ =

[
x1 x2 · · · xd

]
is the

transpose of x. Each statement that refers to a random quantity is meant to be true almost surely.
Consider an asset universe with N ∈N risky assets and one riskless asset. I assume that the

assets are infinitely divisible and ignore any market frictions. Let St =
(
S0t, S1t, . . . , SNt

)
be the

vector of asset prices at time t = 0, 1, . . . , where S0t denotes the price of the riskless asset. The
unit of time is one trading day. I assume, without loss of generality, that S0t = 1 for t = 0, 1, . . .
and that Si0 = 1 for i = 1, 2, . . . , N. In the following, each statement that contains the index i or t
is meant to be true for all i and t that are appropriate in the given context. The price process{

St
}

t=0,1,... shall be positive. The time-index set is always
{

0, 1, . . .
}

and thus I will omit the
subscript in “{·}t=0,1,...” for notational convenience.

Let Xt := St/St−1 be the vector of price relatives after the trading day t, where the division of
St by St−1 is understood to be componentwise. Any capital appreciation for Asset i during Day
t, e.g., interest or dividend income, is considered part of the asset price Sit. The portfolio weights
of the risky assets are denoted by w1, w2, . . . , wN , whereas w0 is the weight of the riskless asset.
Hence, w = (w0, w1, . . . , wN) ∈ RN+1 is a portfolio that consists of the riskless asset and N risky
assets. Each single asset is considered a portfolio, i.e., a canonical vector in RN+1. In order to
distinguish the risky part of w from its riskless part, w0, I write w̃ = (w1, w2, . . . , wN) ∈ RN .

Although the following terms will be defined later on, I shall clarify their notation beforehand
because it is used throughout this work. The symbol w∗ = (w∗0 , w∗1 , . . . , w∗N) denotes the LOP,
whereas w? = (w?

0 , w?
1 , . . . , w?

N) is the MVOP. Note that the former superscript, “∗,” has 6 spikes,
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whereas the latter, “?,” consists of 5 spikes. This shall symbolize a key observation of this work,
namely that the LOP and the MVOP are almost indistinguishable in most practical applications,
which hopefully does not hold for the symbols themselves. The symbols w̃∗ = (w∗1 , w∗2 , . . . , w∗N)
and w̃? = (w?

1 , w?
2 , . . . , w?

N) denote the risky parts of w∗ and w?, respectively. Further, wi is the
portfolio weight of Asset i. By contrast, wn is an estimator for the portfolio w, where n ∈N is the
number of observations.1 Consequently, win is the estimator for the portfolio weight of Asset i.

At the end of each trading day, the investor re-balances his portfolio according to a constant
vector of portfolio weights w satisfying the budget constraint 1′w = 1. The portfolio value at
Day n ∈ N amounts to Vwn := ∏n

t=1 w′Xt. The investment capital might vanish during some
trading day if we do not pose any additional constraints on the portfolio weights. In fact, if we
allow the investor to enter short positions, the probability of going bankrupt, i.e., Vwn ≤ 0, is
positive unless we make some additional assumption about

{
Xt
}

. Hence, the portfolio w must
be an element of the (unit) simplex

S :=
{

w ∈ RN+1 : w ≥ 0 ∧ 1′w = 1
}

.

The assumption w ∈ S is crucial. It guarantees that w′Xt > 0 so that Vwn > 0 for all n ∈ N.
Hence, the log-value process log Vwn = ∑n

t=1 log w′Xt exists for all w ∈ S and n ∈ N, where
log w′Xt is referred to as the log-return on the portfolio after Day t. The short-selling constraints
are indispensable because otherwise log w′Xt might not be defined.

Now, I make the following basic assumptions:

A1. The relative price process
{

Xt
}

is stationary,

A2. the expected value of log w′Xt is finite for all w ∈ S , and

A3. w′1Xt and w′2Xt do not coincide for any w1, w2 ∈ RN+1 with w1 6= w2.

A1 implies that the components of
{

Xt
}

are identically distributed, A2 guarantees that we
can work with the quantity E(log w′Xt), and A3 require the relative prices to span (0, ∞)N+1.2

Note that A3 includes portfolios that are outside the simplex.

3. The Log-Optimal Portfolio

Definition 1. A log-optimal portfolio is a portfolio w∗∈ S that maximizes the expected log-return, i.e.,

w∗ = arg max
w∈S

E
(

log w′Xt
)
.

The LOP is often associated with the “Kelly criterion” (Kelly, 1956). Its asymptotic optimality
properties are elaborated by Algoet and Cover (1988), Bell and Cover (1980) as well as Breiman
(1961).3 Although it was originally studied in information theory, it became of growing interest

1Actually, I assume that n > N and so there should be no confusion.
2This implies that no asset can be replicated by a convex combination of other assets.
3See also Chapter 15 in Cover and Thomas (1991).
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to the finance community over the last decades. As already mentioned in Section 1, the LOP is
sometimes referred to as the GOP. However, the GOP is typically studied in a continuous-time
framework, whereas the LOP is based on a discrete-time setting.4

Proposition 1. We have that
∂

∂w
E
(

log w′Xt
)
= E

(
Xt

w′Xt

)
.

Proof: For each x > 0, the partial difference quotient

log
(
w′x + ∆wi · xi

)
− log w′x

∆wi
=

1
∆wi

log
w′x + ∆wi · xi

w′x

=
1

∆wi
log
(

1 +
∆wi · xi

w′x

)
> 0, ∆wi > 0,

increases monotonically and tends to xi/w′x > 0 as ∆wi↘ 0. The Monotone Convergence
Theorem completes the proof. Q.E.D.

The Karush–Kuhn–Tucker (KKT) conditions for the LOP are quite nice (Cover and Thomas,
1991, Theorem 15.2.1). The following theorem establishes also its existence and uniqueness.

Theorem 1. The LOP exists and is unique. It is characterized by w∗∈ S such that

E
(

Xit

w∗′Xt

){
= 1, w∗i > 0
≤ 1, w∗i = 0

.

Proof: We have that

log
[
πv + (1− π)w

]′Xt ≥ π log v′Xt + (1− π) log w′Xt

for all v, w ∈ S and 0 < π < 1, i.e., the objective function w 7→ E
(

log w′Xt
)

is concave. The
simplex S is compact and convex, which means that the LOP exists. Further, the random
variables v′Xt and w′Xt do not coincide for any v, w ∈ S with v 6= w. Hence, since the natural
logarithm is strictly concave, for each 0 < π < 1 and v, w ∈ S with v 6= w it holds that

log
[
πv + (1− π)w

]′Xt > π log v′Xt + (1− π) log w′Xt

with positive probability. Hence, the given objective function is strictly concave and thus w∗

is unique. Further, the constraints on the portfolio weights can be written as gi(w) = −wi ≤ 0
and h(w) = 1′w− 1. From Proposition 1 it follows that E

(
Xt/w∗′Xt

)
= λ1− κ with w∗ ∈ S ,

λ ∈ R, κ = (κ0, κ1, . . . , κN) ≥ 0, and w∗i κi = 0. Now, from w∗′E
(
Xt/w∗′Xt

)
= 1, w∗′κ = 0, and

w∗′1 = 1, we conclude that λ = 1. Thus, we obtain

E
(

Xt

w∗′Xt

)
= 1− κ ,

which leads to the given expression in the theorem. Q.E.D.

4See Karatzas and Kardaras (2007) for a detailed analysis of the GOP.
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The portfolio weight w∗i is bound by S if and only if E(Xit/w∗′Xt) < 1, whereas the partial
derivative equals 1 whenever w∗i > 0. If all (optimal) portfolio weights are positive the solution
of the optimization problem, w∗, lies in the interior of S . Since

(w− w∗)′E
(

Xt

w∗′Xt

)
= w′E

(
Xt

w∗′Xt

)
︸ ︷︷ ︸

=1

− E
(

w∗′Xt

w∗′Xt

)
︸ ︷︷ ︸

=1

= 1− 1 = 0 , ∀w ∈ S ,

the expected log-return stays constant after any local change of the portfolio weights. By contrast,
suppose that (at least) one partial derivative is lower than 1. Hence, some portfolio weight must
be zero and thus w∗ lies on the boundary of S . Now, the expected log-return decreases after a
local change of a portfolio weight that is bound by S . These considerations will be important
later on when deriving the asymptotic properties of the LOP estimators.

4. The Best Constant Re-Balanced Portfolio

Definition 2. A best constant re-balanced portfolio is a portfolio w∗n ∈ S that maximizes the in-sample
average log-return, i.e.,

w∗n = arg max
w∈S

1
n

n

∑
t=1

log w′Xt . (1)

A BCRP can be considered an empirical version of the LOP. It is said to be the “best” constant
re-balanced portfolio because w∗n maximizes the final value after Period n ∈N, i.e., Vwn, over all
constant re-balanced portfolios w ∈ S . However, the maximization is done in hindsight, i.e., after
all asset prices have been revealed to the investor, and thus the BCRP is unknown in advance.

4.1. Small-Sample Properties

4.1.1. Existence and Uniqueness

Let n ∈N be the number of price observations. I make the following additional assumptions:

A4. The number of observations exceeds the number of risky assets, i.e., n > N.

A5. The sample of price relatives, i.e., X =
[
X1 X2 · · · Xn

]
, has full rank.

Theorem 2. The BCRP exists and is unique. It is characterized by w∗n ∈ S such that

1
n

n

∑
t=1

Xit

w∗′n Xt

{
= 1, w∗in > 0
≤ 1, w∗in = 0

.

Proof: Since w 7→ 1
n ∑n

t=1 log w′Xt is a concave objective function, Eq. 1 represents a convex
optimization problem and, because the simplex is compact and convex, the BCRP exists. The
rank of X is full so that v, w ∈ RN+1 must lead to different value processes unless v = w. That is,
the given objective function is strictly concave, which implies that the BCRP is unique. The rest
of the proof follows by the arguments that are used in the proof of Theorem 1. Q.E.D.
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A simple numerical algorithm for computing the BCRP is developed by Cover (1984). I will
come back to this point in Section 6.

4.1.2. Finite-Sample Bias

In most situations, we can assume that the investor has no prediction power (Frahm, 2015),
i.e., w∗n does not depend on Xn+1. Further, we may readily assume that w∗n 6= w∗ with positive
probability. Otherwise, there would be no estimation risk at all.

A6. The BCRP w∗n is stochastically independent of Xn+1.

A7. The BCRP does not coincide with the LOP, i.e., P(w∗n = w∗) 6= 1.

Let X be any positive random vector that has the same distribution as the price relatives
X1, X2, . . . and define the following quantities:

• ϕ(w∗) := E
(

log w∗′X
)
,

• ϕ(w∗n) := E
(

log w∗′n Xn+1
)
,

• ϕn(w∗n) := E
( 1

n ∑n
t=1 log w∗′n Xt

)
.

Hence, ϕ(w∗) is the expected log-return on the LOP, ϕ(w∗n) denotes the expected out-of-sample
log-return on the BCRP, and ϕn(w∗n) represents the expected (in-sample) average log-return on
the BCRP. The investor cannot achieve ϕ(w∗) because the LOP is unknown to him. Instead, he
maximizes the average log-return 1

n ∑n
t=1 log w∗′n Xt in order to compute the BCRP. At the end

of Day n he applies the BCRP and one day later he obtains the log-return log w∗′n Xn+1. For this
reason, ϕ(w∗n) may be considered the basic performance measure for w∗n.

The following theorem describes why the BCRP might lead to wrong conclusions in real-life
situations.

Theorem 3. ϕ(w∗n) < ϕ(w∗) < ϕn(w∗n)

Proof: By definition, w∗ is the element of S that maximizes the expected log-return. Moreover,
due to A6 and A7, and the fact that w∗ is unique, we have that

E
(

log w∗′n Xn+1 |w∗n
)
≤ E

(
log w∗′Xn+1

)
with probability 1, but

E
(

log w∗′n Xn+1 |w∗n
)
< E

(
log w∗′Xn+1

)
with positive probability. From the Law of Total Expectation and the stationarity of

{
Xt
}

we
conclude that

ϕ(w∗n) = E
(

E
(

log w∗′n Xn+1 |w∗n
))

< E
(

log w∗′Xn+1
)
= E

(
log w∗′X

)
= ϕ(w∗) .
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Moreover, since w∗n is unique and does not coincide with w∗, we have that

P

(
1
n

n

∑
t=1

log w∗′n Xt >
1
n

n

∑
t=1

log w∗′Xt

)
> 0 and P

(
1
n

n

∑
t=1

log w∗′n Xt ≥
1
n

n

∑
t=1

log w∗′Xt

)
= 1.

This means that

ϕn(w∗n) = E

(
1
n

n

∑
t=1

log w∗′n Xt

)
> E

(
1
n

n

∑
t=1

log w∗′Xt

)
= E

(
log w∗′X

)
= ϕ(w∗) .

Q.E.D.

Hence, in finite samples, the expected out-of-sample log-return on the BCRP is always lower
than the expected log-return on the LOP. Nonetheless, the investor typically overestimates not
only ϕ(w∗n) but also ϕ(w∗) when maximizing 1

n ∑n
t=1 log w′Xt. However, this phenomenon is

not limited to the BCRP. It is a general (and quite serious) problem of portfolio optimization
(see, e.g., Frahm, 2015, Frahm and Memmel, 2010, Kan and Zhou, 2007, Memmel, 2004).

4.2. Large-Sample Properties

4.2.1. Consistency

For the subsequent analysis it is convenient to define the function x 7→ fw(x) := log w′x for all
w ∈ S and x > 0 as well as the functions

w 7→ M(w) := E
(

fw(X)
)

and w 7→ Mn(w) :=
1
n

n

∑
t=1

fw(Xt)

for all n ∈N. I make the following assumption, which is often used in the theory of empirical
processes (see, e.g., van der Vaart, 1998, Chapter 19):

A8. The family F =
{

fw
}

w∈S is Glivenko-Cantelli, i.e.,

sup
w∈S
|Mn(w)−M(w)| → 0 .

Hence, the Strong Law of Large Numbers shall hold true for the sequence
{

Mn(w)
}

uniformly
in S . For example, according to van der Vaart (1998, p. 46), it is sufficient to guarantee that

(i) w stems from a compact set,

(ii) the elements of F are continuous for every x > 0, and

(iii) they are dominated by an integrable function,

provided X1, X2, . . . are serially independent.5 The first two properties are clearly satisfied in
our context. The last property is shown in the proof of Theorem 5.

The next theorem asserts that the BCRP is strongly consistent for the LOP.

5See also Example 19.8 in van der Vaart (1998).
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Theorem 4. w∗n → w∗

Proof: The BCRP w∗n represents an M-estimator, whose criterion functions are given by M and
Mn. Let ε be any positive real number and Pε :=

{
w ∈ S : ‖w− w∗‖ = ε

}
.6 Since M is strictly

concave, there exists some δ > 0 such that M(w∗)−M(w) > δ for all w ∈ Pε. Now, since F
is Glivenko-Cantelli, we can find a sufficiently large number m ∈ N such that, for all natural
numbers n ≥ m, |Mn(w∗)−M(w∗)| ≤ δ/2 and |Mn(w)−M(w)| ≤ δ/2 for all w ∈ Pε. Thus,
Mn(w) < Mn(w∗) for all w ∈ Pε. Since Mn is strictly concave, this implies that ‖w∗n − w∗‖ < ε

for all n ≥ m. This holds for every ε > 0 and so we have that w∗n → w∗. Q.E.D.

The next theorem asserts that the expected out-of-sample log-return on the BCRP converges
to the expected log-return on the LOP.

Theorem 5. ϕ(w∗n)→ ϕ(w∗)

Proof: Theorem 4 and the Continuous Mapping Theorem reveal that log w∗′n x → log w∗′x for
all x > 0. Now, in order to apply the Dominated Convergence Theorem, it suffices to find an
integrable function x 7→ g(x) such that | fw(x)| ≤ g(x) for all w ∈ S and x > 0. Note that

−1′(log x)− ≤ w′ log x ≤ log w′x ≤ log1′x

for all x > 0, where (log x)− denotes the negative part of the vector log x. Hence, the function

x 7→ g(x) = max
{
1′(log x)−, log1′x

}
dominates each fw. Since E

(
| log w′Xt|

)
< ∞ for all w ∈ S , we have that E

(
| log Xit|

)
< ∞ and

thus E
(
1′(log Xt)−

)
< ∞. Moreover, note that E (log w′Xt) < ∞ for w = 1/N and 1′Xt > 1

because X0t = 1. Hence, we obtain

∞ > log N + E
(

log
1′Xt

N

)
= E

(
log N + log

1′Xt

N

)
= E

(
log1′Xt

)
.

The maximum of two nonnegative and integrable random variables is also integrable. Thus,
we conclude that E

(
g(Xt)

)
< ∞, i.e., the dominating function g is integrable. Hence, by the

Dominated Convergence Theorem, we obtain

ϕ(w∗n) = E
(

log w∗′n Xn+1
)
→ E

(
log w∗′Xn+1

)
= E

(
log w∗′X

)
= ϕ(w∗) .

Q.E.D.

Finally, also the average log-return on the BCRP converges to the expected log-return on the
LOP as the number of observations grows to infinity.

Theorem 6. 1
n ∑n

t=1 log w∗′n Xt → ϕ(w∗)

6Here, “Pε” stands for “ε-periphery.” Note that it contains only those w with distance ε to w∗ that belong to S .
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Proof: The statement is equivalent to |Mn(w∗n)−M(w∗)| → 0. Thus, it suffices to demonstrate
that ∣∣Mn(w∗n)−M(w∗n)

∣∣→ 0 and
∣∣M(w∗n)−M(w∗)

∣∣→ 0.

The former is an immediate consequence of A8. Moreover, the Dominated Convergence Theorem
tells us that M(wn)→ M(w) for every sequence {wn} with wn ∈ S such that wn → w ∈ S . This
means that M is continuous at each w ∈ S . Theorem 4 and the Continuous Mapping Theorem
complete the proof. Q.E.D.

4.2.2. Asymptotic Distribution

In this section, I establish the asymptotic distribution of
√

n
(
w∗n − w∗

)
. This can be done for all

dimensions of w∗ that are not bound by S , i.e., E
(
Xit/w∗′Xt

)
= 1. As I already explained at the

end of Section 3, each other component of w∗ is bound by the simplex. If w∗i = 0 represents such
a component, i.e., E

(
Xit/w∗′Xt

)
< 1, it is well-known that

√
n (w∗in − w∗i ) =

√
n w∗in

p→ 0 ,

i.e., w∗in is superconsistent. However, not all components of the LOP can be affected by the given
constraints on the portfolio weights. Indeed, we must have that E

(
Xit/w∗′Xt

)
= 1 for at least

one asset because otherwise the KKT conditions given by Theorem 1 cannot be satisfied. Thus,
we can reduce the asset universe until there is no portfolio weight that is bound by S . The
riskless asset need not be part of the reduced asset universe. However, in order to avoid the
trivial solution w∗n = 1, there should be at least two remaining assets in the universe.

I assume that the given asset universe has been reduced such that E
(
Xt/w∗′Xt

)
= 1. This

guarantees that

(w− w∗)′∇M(w∗) = (w− w∗)′E
(

X
w∗′X

)
= 0 .

This means that the function M can be locally approximated at w∗ by

M(w) = M(w∗) +
1
2
(w− w∗)′∇2M(w∗)(w− w∗) + o

(
‖w− w∗‖2)

and A3 guarantees that the Hessian

∇2M(w∗) = −E
(

XX′

(w∗′X)2

)
is negative definite.

Further, I have to make the following assumptions:

A9. The function fw can be locally approximated at w∗ by

fw(Xt) = fw∗(Xt) + (w− w∗)′
(

Xt

w∗′Xt

)
+ ‖w− w∗‖ r(Xt; w),

10



Frahm, 2018 • Statistical Properties of Estimators for the Log-Optimal Portfolio

where the process
{

r(Xt; w)
}

is stochastically equicontinuous (Geyer, 1994, p. 2000).

A10. We have that
√

n

(
1
n

n

∑
t=1

Xt

w∗′Xt
− 1

)
 N

(
0, A

)
.7

In particular, if the components of
{

Xt
}

are serially independent, we obtain the asymptotic
covariance matrix

A = Var
(

X
w∗′X

)
= E

(
XX′

(w∗′X)2

)
− 11′.

Nonetheless, we could also take any form of serial dependence into consideration, provided the
Central Limit Theorem expressed by A10 is satisfied.

Suppose that Θ ⊆ Rd is any parameter set and let θ ∈ Θ be the “true” parameter. The tangent
cone at θ is the set that we obtain after centering Θ at θ, blowing it up by some factor τ > 0 and
taking the set limit for τ → ∞ (Geyer, 1994, p. 1993). In order to study the asymptotic behavior
of a sequence {θn} of global optimizers that converges to θ it is crucial to guarantee that the
parameter set Θ is Chernoff regular (Geyer, 1994), viz.

lim inf
τ→∞

τ
(
Θ− θ

)
= lim sup

τ→∞
τ
(
Θ− θ

)
=: lim

τ→∞
τ
(
Θ− θ

)
.

In our context, the parameter θ corresponds to w∗∈ S , which represents the global solution of
the convex optimization problem expressed by Definition 1. The simplex S is Chernoff regular
and so let TS (w∗) := limτ→∞ τ

(
S − w∗

)
be the tangent cone of the simplex at w∗.8

Consider any random vector Y ∼ N
(
0, A

)
and define the function

ζ 7→ ΨY(ζ) := ζ ′Y− 1
2

ζ ′E
(

XX′

(w∗′X)2

)
ζ , ζ ∈ RN+1.

The (unique) maximizer of ΨY is denoted by

ζ∗ := arg max
ζ∈TS (w∗)

ΨY(ζ) .

The following theorem describes the asymptotic behavior of the BCRP.

Theorem 7.
√

n
(
w∗n − w∗

)
 ζ∗

Proof: This result is an immediate consequence of Theorem 4.4 in Geyer (1994). Q.E.D.

Hence, if the sample size is large,
√

n
(
w∗n − w∗

)
behaves essentially like the solution of a

relatively simple quadratic optimization problem.
The following corollary establishes the long-run distribution of the log-return on the BCRP

relative to the log-return on the LOP.

7Here, “ ” denotes convergence in distribution.
8We could imagine w∗∈ S seeing through a microscope and increasing by and by the magnification. The visible part
of S around w∗ converges to TS (w∗), i.e., τ

(
S − w∗

)
→ TS (w∗), in the Painlevé-Kuratowski sense.

11
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Corollary 1.

log
Vw∗nn

Vw∗n
 ζ∗′Y− 1

2
ζ∗′E

(
XX′

(w∗′X)2

)
ζ∗.

Proof: Note that

Mn(w∗n) =
1
n

n

∑
t=1

log w∗′n Xt and Mn(w∗) =
1
n

n

∑
t=1

log w∗′Xt,

i.e.,

n
(

Mn(w∗n)−Mn(w∗)
)
=

n

∑
t=1

log
w∗′n Xt

w∗′Xt
= log

Vw∗nn

Vw∗n
.

The rest of the proof follows from Theorem 4.4 in Geyer (1994). Q.E.D.

5. The Mean-Variance Estimator

Consider some portfolio w ∈ S and let w̃ = (w1, w2, . . . , wN) be the risky part of that portfolio.
The return on Asset i after Day t is given by Rit := Xit − 1 and so the return on w amounts to
Rwt = w̃′Rt, where Rt = (R1, R2, . . . , RN) denotes the vector of risky asset returns. Assumptions
A1 to A10 shall still hold true. I make the following (additional) assumption:

B1. The second moments of Rt are finite.

Let R be any random vector that has the same distribution as R1, R2, . . . . Define µ := E(R) and
Σ := E(RR′). Note that the matrix Σ contains the second noncentral moments of the risky asset
returns and thus it is not the covariance matrix of R. A3 guarantees that there is no w ∈ RN+1

with w 6= 0 such that w′X = 0. Hence, it cannot happen that w̃′R = 0 for any w̃ ∈ RN with
w̃ 6= 0, i.e., Σ is positive definite.

Now, we may apply the quadratic approximation log(1 + r) ≈ r − 1
2 r2 and come to the

conclusion that

E
(

log(1 + Rwt)
)
≈ E

(
w̃′Rt −

1
2
(w̃′Rt)

2
)
= w̃′µ− 1

2
w̃′Σ w̃ . (2)

This section is build upon the observation that this approximation is fairly good in most practical
applications. Hence, instead of maximizing the expected log-return, we can simply maximize
the mean-variance objective function w 7→ w̃′µ− 1

2 w̃′Σ w̃.9

Definition 3. A mean-variance optimal portfolio is a portfolio w?∈ S that maximizes the mean-variance
objective function, i.e.,

w? = arg max
w∈S

w̃′µ− 1
2

w̃′Σ w̃ .

Before proceeding further, some important remarks may be appropriate:

• I call w? mean-variance optimal, although Σ is not a covariance matrix. However, in most
practical applications, Σ is close to Var(R) whenever R is a vector of daily asset returns.

9Note that the domain of the objective function is S but its value is determined only by the risky part of w, i.e., w̃.

12



Frahm, 2018 • Statistical Properties of Estimators for the Log-Optimal Portfolio

• I focus on the feasible set S only because w? shall serve as an approximation of the LOP.
Of course, in general a mean-variance optimal portfolio need not be restricted to S .

• Under general (but quite technical) regularity conditions, the MVOP can be considered an
approximation of the GOP (Karatzas and Kardaras, 2007). Nonetheless, due to the reasons
explained in Section 3, I deliberately refrain from calling w? “GOP.”

The following theorem is analogous to Theorem 2.

Theorem 8. The MVOP exists and is unique. It is characterized by w?∈ S such that the ith component
of µ− Σ w̃? is {

= λ, w?
i > 0

≤ λ, w?
i = 0

with λ ≥ 0.

Proof: The objective function

w̃ 7→ w̃′µ− 1
2

w̃′Σ w̃

is strictly concave and the given set of constraints on the portfolio weights w1, w2, . . . , wN , i.e.,
w̃ ≥ 0 and 1′w̃ ≤ 1, is closed and convex. Hence, the risky part of w?, i.e., w̃?, exists and is
unique, which means that w? exists and is unique, too. The constraints on the portfolio weights
can be written as gi(w) = −wi ≤ 0 and h(w) = 1′w− 1 = 0. Thus, we must have that[

0
µ− Σ w̃?

]
= λ1− κ

with w? ∈ S , λ ∈ R, κ = (κ0, κ1, . . . , κN) ≥ 0, and w?
i κi = 0 for i = 0, 1, . . . , N. It follows that

λ = κ0 ≥ 0. Q.E.D.

The next corollary shows how to identify the components of w? that are bound by S . This
will be helpful later on.

Corollary 2. The number λ in Theorem 8 is uniquely determined by λ = w̃?′µ− w̃?′Σ w̃?. Moreover,
the portfolio weight

• w?
0 is bound by S if and only if λ > 0, whereas

• w?
i is bound by S if and only if the ith component of µ− Σ w̃? is lower than λ.

Proof: The proof of Theorem 8 reveals that w̃?′µ− w̃?′Σ w̃? = λ = κ0. Since w? is unique, the
same holds for λ. Moreover, w?

0 is bound by S if and only if κ0 > 0, i.e., λ > 0, whereas w?
i is

bound by S if and only if κi > 0, i.e., the ith component of µ− Σ w̃? falls below λ. Q.E.D.

In the following, let

µn :=
1
n

n

∑
t=1

Rt and Σn :=
1
n

n

∑
t=1

RtR′t

be the moment estimators for µ and Σ, respectively. Now, I am ready to define the MVE for w?.

13



Frahm, 2018 • Statistical Properties of Estimators for the Log-Optimal Portfolio

Definition 4. A mean-variance estimator for w? is a portfolio w?
n ∈ S that maximizes the in-sample

mean-variance objective function, i.e.,

w?
n = arg max

w∈S
w̃′µn −

1
2

w̃′Σnw̃ .

5.1. Small-Sample Properties

5.1.1. Existence and Uniqueness

A4 and A5 imply that we cannot find any w̃ 6= 0 such that R′w̃ = 0, where R =
[
R1 R2 · · · Rn

]
denotes the sample of risky asset returns. Hence, we have that

w̃′Σnw̃ = w̃′
(

1
n

n

∑
t=1

RtR′t

)
w̃ =

w̃′RR′w̃
n

> 0

for all w̃ ∈ RN with w̃ 6= 0, which means that Σn is positive definite.
The following corollary is a straightforward consequence of Theorem 8 and thus its proof can

be skipped.

Corollary 3. The MVE exists and is unique. It is characterized by w?
n ∈ S such that the ith component

of µn − Σnw̃?
n is {

= λn, w?
in > 0

≤ λn, w?
in = 0

with λn ≥ 0.

Numerical procedures for solving quadratic optimization problems exist in abundance and
so it is easy to compute w?

n even if the number of dimensions is high. Two points, which are
discussed in more detail in Section 6, are worth emphasizing:

(i) The estimates w∗in and w?
in are indistinguishable in most real-life situations.10 Put another

way, the MVE leads to a very good approximation of the BCRP.

(ii) Cover’s algorithm (1984) for w∗n is slow compared to quadratic optimization algorithms
for w?

n. In particular, this holds true in the high-dimensional case.

5.1.2. Finite-Sample Bias

Let wn ∈ S be any (random) portfolio that is constructed at the end of Day n. We know that the
quantity w̃′nRn+1− 1

2

(
w̃′nRn+1

)2 approximates the out-of-sample log-return on wn and thus I call

E
(

w̃′nRn+1 −
1
2
(
w̃′nRn+1

)2
)

the expected out-of-sample performance of wn. If we make the standard assumption that the
investor has no prediction power, i.e., wn is stochastically independent of Rn+1, we obtain the

10When using daily asset returns, the portfolio weights typically differ only from the fourth digit.
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conditional expectation

E
(

w̃′nRn+1 −
1
2
(
w̃′nRn+1

)2 |wn

)
= w̃′nE

(
Rn+1 |wn

)︸ ︷︷ ︸
= µ

− 1
2

w̃′nE
(

Rn+1R′n+1 |wn
)︸ ︷︷ ︸

=Σ

w̃n

= w̃′nµ− 1
2

w̃′nΣ w̃n,

which can be viewed as the out-of-sample performance of wn. Correspondingly, its expected
out-of-sample performance is

φ(wn) := E
(

w̃′nµ− 1
2

w̃′nΣ w̃n

)
.

This is a basic performance measure in portfolio optimization (see, e.g., Frahm, 2015, Kan and
Zhou, 2007, Markowitz and Usmen, 2003).11

If wn ≡ w ∈ S is a fixed portfolio, we have that φ(w) = w̃′µ− 1
2 w̃′Σ w̃, in which case we may

simply say that φ(w) is the performance of w. In particular,

φ(w?) = w̃?′µ− 1
2

w̃?′Σ w̃?

represents the performance of the MVOP.
Hence, I make the following assumptions, which are analogous to A6 and A7:

B2. The MVE w?
n is stochastically independent of Rn+1.

B3. The MVE does not coincide with the MVOP, i.e., P(w?
n = w?) 6= 1.

Due to B2 the expected out-of-sample performance of the MVE amounts to

φ(w?
n) = E

(
w̃?′

n µ− 1
2

w̃?′
n Σ w̃?

n

)
.

Finally, w̃?′
n µn − 1

2 w̃?′
n Σnw̃?

n represents the in-sample performance of w?
n and thus

φn(w?
n) := E

(
w̃?′

n µn −
1
2

w̃?′
n Σnw̃?

n

)
shall denote the expected in-sample performance of the MVE.

The following theorem is similar to Theorem 3.

Theorem 9. φ(w?
n) < φ(w?) < φn(w?

n)

Proof: By definition, w? is the portfolio that maximizes the performance. Due to B2 and B3, we
conclude that

φ(w?
n) = E

(
w̃?′

n µ− 1
2

w̃?′
n Σ w̃?

n

)
< w̃?′µ− 1

2
w̃?′Σ w̃? = φ(w?) .

11Some authors use the covariance matrix of R instead of Σ = E(RR′).
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Moreover, since w?
n is unique and does not coincide with w?, we have that

P

(
w̃?′

n µn −
1
2

w̃?′
n Σnw̃?

n > w̃?′µn −
1
2

w̃?′Σnw̃?

)
> 0

and
P

(
w̃?′

n µn −
1
2

w̃?′
n Σnw̃?

n ≥ w̃?′µn −
1
2

w̃?′Σnw̃?

)
= 1 ,

which means that

φn(w?
n) = E

(
w̃?′

n µn −
1
2

w̃?′
n Σnw̃?

n

)
> E

(
w̃?′µn −

1
2

w̃?′Σnw̃?

)
= w̃?′µ− 1

2
w̃?′Σ w̃? = φ(w?) .

Q.E.D.

Theorem 9 shows that, in finite samples, we still suffer from the same problems as the BCRP.
This means that the in-sample performance of the MVE typically overestimates its expected
out-of-sample performance and even the performance of the MVOP.

5.2. Large-Sample Properties

5.2.1. Consistency

The next assumption requires that
{

Rt
}

and
{

RtR′t
}

obey the Strong Law of Large Numbers.

B4. The estimators µn and Σn are strongly consistent for µ and Σ, i.e., µn → µ and Σn → Σ.

Theorem 10. w?
n → w?

Proof: Note that
w?

n = arg max
w∈S

w̃′µn −
1
2

w̃′Σnw̃

represents a function of µn and Σn. Since S is convex, this function is continuous in µn and Σn.
From B4 and the Continuous Mapping Theorem it follows that w?

n → w?. Q.E.D.

The next theorem is analogous to Theorem 5.

Theorem 11. φ(w?
n)→ φ(w?)

Proof: The objective function w 7→ w̃′µ − 1
2 w̃′Σ w̃ is continuous in w ∈ S and the set S is

compact. From the Extreme Value Theorem we conclude that it has a minimum, a, and a
maximum b. Hence, w 7→ max

{
|a|, |b|

}
is a dominating function and it is clearly integrable. We

already know that w?
n → w? and from the Dominated Convergence Theorem it follows that

φ(w?
n) = E

(
w̃?′

n µ− 1
2

w̃?′
n Σ w̃?

n

)
→ w̃?′µ− 1

2
w̃?′Σ w̃? = φ(w?) .

Q.E.D.
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Moreover, the Continuous Mapping Theorem immediately implies that

w̃?′
n µn −

1
2

w̃?′
n Σnw̃?

n → w̃?′µ− 1
2

w̃?′Σ w̃? = φ(w?),

i.e., the in-sample performance of the MVE converges to the performance of the LOP.

5.2.2. Asymptotic Distribution

Now, I derive the asymptotic distribution of
√

n (w?
n − w?). If some portfolio weight w?

i is
bound by S it must be zero and the associated MVE is superconsistent, i.e.,

√
n w?

in
p→ 0. Hence,

in order to derive the asymptotic distribution of
√

n (w?
n − w?), we must guarantee that no

component of the MVOP w? is bound by S . According to Corollary 2, this holds true if and
only if µ− Σ w̃? = 0, i.e., w̃? = Σ−1µ, where w? ∈ S contains the weight of the riskless asset.
However, in practical situations it often happens that w?

0 is bound by S , which means that the
Lagrange multiplier λ in Theorem 8 is positive. In this case, we must abandon the riskless asset
from our asset universe and focus on the risky assets. Then the MVOP is simply characterized
by w̃?∈ S such that the ith component of µ− Σ w̃? is{

= λ, w?
i > 0

≤ λ, w?
i = 0

with λ ∈ R. Thus, in the case in which the riskless asset has been removed, I assume that the
remaining asset universe is such that µ− Σ w̃? = λ1 for any λ ∈ R.

Consider the family F =
{

fw
}

w∈S with

r 7→ fw(r) = w̃′r− 1
2
(w̃′r)2

for all w ∈ S and r ∈ RN . Further, define the functions

w 7→ F(w) := E
(

fw(R)
)
= w̃′µ− 1

2
w̃′Σ w̃

and

w 7→ Fn(w) :=
1
n

n

∑
t=1

fw(Rt) = w̃′µn −
1
2

w̃′Σnw̃ .

It is obvious that the function F can be locally approximated at w? by

F(w) = F(w?)− 1
2
(w̃− w̃?)′Σ (w̃− w̃?),

where Σ is positive definite. The next regularity conditions shall also be satisfied:

B5. The function fw can be locally approximated at w? by

fw(Rt) = fw?(Rt) + (w̃− w̃?)′
(

Rt − RtR′tw̃
?
)
+ ‖w̃− w̃?‖ r(Rt; w̃),
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where the process
{

r(Rt; w̃)
}

is stochastically equicontinuous.

B6. We have that √
n
(
µn − µ

)
−
√

n
(
Σn − Σ

)
w̃?  N

(
0, B

)
.

The latter assumption indicates that we can decompose the estimation risk into two parts:

(i)
√

n
(
µn − µ

)
represents the estimation risk that can be attributed to µ, whereas

(ii)
√

n
(
Σn − Σ

)
w̃? stands for the estimation risk that is related to Σ.

Note that such a risk decomposition cannot be accomplished for the BCRP.
In some cases it is possible to calculate the asymptotic covariance matrix B. For example, if

R1, R2, . . . are serially independent and normally distributed, we have that

B = (1− w̃?′µ)2 Γ− (1− w̃?′µ)(Γ w̃?)µ′ − (1− w̃?′µ)µ(Γ w̃?)′ +(
w̃?′Γ w̃?

) (
Γ + µµ′

)
+
(
Γ w̃?

)(
Γ w̃?

)′,
where Γ = Σ − µµ′ denotes the covariance matrix of R.12 More precisely, we can apply the
decomposition B = Bµ + BΣ, where

Bµ = Γ−
[(

Γ w̃?
)
µ′ + 2(w̃?′µ)Γ + µ

(
Γ w̃?

)′],
quantifies the estimation risk that is associated with µ and

BΣ = (w̃?′µ)2 Γ + (w̃?′µ)(Γ w̃?)µ′ + (w̃?′µ)µ(Γ w̃?)′ +
(
w̃?′Γ w̃?

)(
Γ + µµ′

)
+
(
Γ w̃?

)(
Γ w̃?

)′,
measures the estimation risk related to Σ. Similar results can be obtained if we assume that R
has an elliptical distribution possessing heavy tails and tail dependence, e.g., the multivariate
t-distribution. Alternatively, we could apply a (block) bootstrap (see, e.g., Politis, 2003) in order
to approximate B or even Bµ and BΣ without making any parametric assumption.

Consider any random vector Z ∼ N (0, B). Now, we may define

ς 7→ ΦZ(ς) := ς̃′Z− 1
2

ς̃′Σ ς̃, ς ∈ RN+1,

with ς = (ς0, ς1, . . . , ςN) and ς̃ = (ς1, ς2, . . . , ςN). The (unique) maximizer of ΦZ is given by

ς? = arg max
ς∈TS (w?)

ΦZ(ς) .

The following theorem clarifies the asymptotic behavior of the MVE. This result follows by
the same arguments that are used for Theorem 7 and so the proof can be skipped.

Theorem 12.
√

n
(
w?

n − w?
)
 ς?

12The derivation of B can be found in the appendix.
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In the case in which the riskless asset has been removed from the asset universe, we may
consider the maximizer

ς̃? = arg max
ς̃∈TS (w̃?)

ς̃′Z− 1
2

ς̃′Σ ς̃

and then Theorem 12 reads
√

n
(
w̃?

n − w̃?
)
 ς̃?.

6. Some Practical Remarks

6.1. Computational Issues

Cover’s (1984) algorithm for the BCRP is simple and works like this:

(i) Choose any initial portfolio w(0) ∈ S and set k← 0.

(ii) Update the portfolio according to

w(k+1) = w(k) � 1
n

n

∑
t=1

Xt

w(k)′Xt

and set k← k + 1.13

(iii) Repeat the second step until the largest component of the vector

1
n

n

∑
t=1

Xt

w(k)′Xt

falls below a critical threshold.14

For computing the MVE, I use the MOSEK optimization toolbox for MATLAB.
The BCRP, w∗n, and the MVE, w?

n, are almost identical. However, computing w?
n by quadratic

optimization turns out to be much faster. In order to demonstrate these statements, I simulate n
independent and identically distributed vectors of daily asset returns R1, R2, . . . , Rn ∼ N

(
µ, Γ

)
with

µ =
0.1
250

1 and Γ =
0.22

250
(
0.311′ + 0.7 IN

)
. (3)

I choose N = 100 risky assets and n = 250 daily observations. In this case, both w∗0 and w?
0 are

bound by S , i.e., w∗0 = w?
0 = 0. Thus, I abandon the riskless asset from the asset universe.

The numerical simulations are done 100 times. Each time I apply Cover’s algorithm for w̃∗n
and the quadratic optimizer for w̃?

n. The average results are as follows: Cover’s algorithm needs
5.5914 seconds, whereas the quadratic optimizer takes only 0.0103 seconds.15 The supremum
norm of w̃∗n − w̃?

n is 0.0173. Although Cover’s algorithm is much slower than the quadratic
optimizer, the outcome of the latter turns out to be slightly better. The quadratic optimizer
leads to an annualized average log-return of 0.4892, whereas Cover’s algorithm yields only

13Here, “�” denotes the Hadamard, i.e., componentwise, matrix product.
14In my own computations, I use the threshold exp 10−6.
15The computations have been done on a Windows Laptop with Intel Core i7-5500U CPU (2.4 GHz).

19



Frahm, 2018 • Statistical Properties of Estimators for the Log-Optimal Portfolio

Figure 1: 100 realizations of w̃?
n on the basis of 250, 2500, and 1 million daily observations (from

left to right) if µ is unknown (upper part) and if it is known (lower part).

0.4890 per year. Put another way, w̃?
n comes even closer to the (true) BCRP than w̃∗n. In fact, the

average log-returns produced by the quadratic optimizer are always better than those of Cover’s
algorithm. Hence, w̃?

n dominates w̃∗n in a numerical sense. Moreover, Cover’s algorithm is very
slow in high dimensions, whereas the quadratic optimizer works well even for N = 1000 and
n = 2500, in which case the computational time for w̃?

n is still below 1 second.
There is another computational issue. For applying the asymptotic results derived in Section

4.2.2 we have to simulate the random vector Y ∼ N (0, A), where the covariance matrix A
appears in A10. The problem is that A is singular. More precisely, we have that

w̃∗′A w̃∗ = w̃∗′E
(

XX′

(w̃∗′X)2

)
w̃∗ − w̃∗′11′w̃∗ = E

(
(w̃∗′X)2

(w̃∗′X)2

)
− 12 = 0,

which means that A is not positive definite. Thus, we have to apply a matrix decomposition
in order to simulate Y. This issue does not arise when applying the asymptotic results derived
in Section 5.2.2, in which case we must simulate the random vector Z ∼ N (0, B). As already
mentioned in Section 5.2.2, we can even provide a closed-form expression for B in many standard
situations. The principle technique is demonstrated in the appendix.

To sum up, the quadratic approximation proposed at the beginning of Section 5 works very
well and, in contrast to the BCRP, the MVE does not suffer from computational issues. For this
reason, I focus on w̃?

n in the following discussion.

6.2. Statistical Inference

I still assume that the components of
{

Rt
}

are serially independent and normally distributed.
To keep things as simple as possible, I choose the parameterization in Eq. 3. Let the number
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Figure 2: 100 realizations of w̃∞
n on the basis of 250, 2500, and 1 million daily observations (from

left to right) if µ is unknown (upper part) and if it is known (lower part).

of risky assets be N = 2 and the number of observations be n = 250.16 Once again, I generate
100 samples and with each one I compute a realization of w̃?

n. On the upper left of Figure 1 we
can see that most of the estimates are far away from w̃? = (0.5, 0.5). The vast majority of the
estimates are boundary solutions. More precisely, we have 50 estimates that equal (0, 1) and
41 that correspond to (1, 0). The given result does not improve, essentially, if we increase the
number of observations to n = 2500 and it is still sobering even for 1 million observations. By
contrast, if we assume that µ was known the estimates turn out to be much better (see the lower
part of Figure 1). In particular, there is no more estimate at the boundary of the simplex, and in
the case of n = 106 observations the estimates are almost identical with w̃?.

Are we able to replicate the finite-sample results by a large-sample approximation? For this
purpose we could use Theorem 12 and the expressions for Bµ and BΣ presented in Section 5.2.2.
The corresponding realizations of the synthetic estimator w̃∞

n := w̃? + ς̃?/
√

n are depicted in
Figure 2. The upper left of this figure indicates that there are 90 realizations outside the simplex.
This is because the large-sample approximation is based on the maximizer ς̃?, which belongs to
the tangent cone of S at w̃?. Hence, the support of w̃∞

n does not correspond to S . Similarly, there
are 82 realizations of w̃∞

n missing in the simplex on the upper center. By contrast, the simplex
on the upper right contains all 100 realizations of w̃∞

n . The picture changes essentially on the
lower part of Figure 2, where it is assumed that µ is known. In this case, we cannot find any
realization of w̃∞

n outside S . Moreover, the large-sample approximation satisfyingly reproduces
the finite-sample results that are depicted on the lower part of Figure 1.

The problem is that the expected asset returns are unknown in real life. However, we can
essentially improve the large-sample approximation by applying a finite-sample correction. We
know from Theorem 12 that, if the sample size is large,

√
n
(
w̃?

n − w̃?
)

behaves essentially like

16The weight of the riskless asset is still bound by S and thus w?
0 = 0.
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Figure 3: Empirical distribution functions of w?
1n (black line) vs. w�1n (green line) for 250, 2500,

and 1 million observations (from left to right).

the maximizer of ς̃ 7→ ς̃′Z− 1
2 ς̃′Σ ς̃ over the tangent cone of S at w̃?, i.e., ς̃?. Hence, since the

sample size is not large enough, we may substitute ς̃? with

ς̃?n := arg max
ς̃∈
√

n (S−w̃?)

ς̃′Z− 1
2

ς̃′Σ ς̃ .17

The corrected version of w̃∞
n reads w̃�n := w̃? + ς̃?n/

√
n , which always belongs to the simplex.

In order to verify that the finite-sample correction works fine, we may compare the empirical
distribution functions of 10000 realizations of w?

1n and w�1n, where µ is assumed to be unknown.
We still have only N = 2 risky assets and the parameterization is the same as before (see Eq. 3).
The results are given in Figure 3. Obviously, the finite-sample correction serves its purpose.
Indeed, the corrected large-sample approximation is very accurate for all sample sizes.

Figure 3 reveals that most realizations of w̃�n are either (0, 1) or (1, 0) unless the sample size
equals n = 106. The LOP corresponds to w̃? = (0.5, 0.5) and thus it is precisely in between (0, 1)
and (1, 0). It seems that estimating the LOP is a mission impossible in real-life situations—at
least without any prior information about µ. Table 1 contains the probability that the realization
of the MVE is a single-asset portfolio for different numbers of assets (N = 5, 50, 100, 500, 1000)
and observations (n = 250, 2500, 5000, 10000, 106). The results are based on 1000 realizations
of w̃�n for each combination of N and n. Note that the LOP always corresponds to the equally
weighted portfolio, i.e., w̃? = 1/N. The table shows that, in all practical applications, the MVE
proposes a single-asset portfolio with high probability although the LOP is well-diversified.

Now, in principle, we are able to construct hypothesis tests and compute confidence regions.
For example, we could try to apply a hypothesis test of the form H0 : w̃? = w̃?

0 vs. H1 : w̃? 6= w̃?
0

for any w̃?
0 ∈ S even in the case of N > 2.18 However, in the light of the previous results, I doubt

that any hypothesis test will ever lead to a rejection or that a confidence region will ever be
sufficiently small in real-life situations. This conclusion might appear negative to the reader, but
I fear that this is the price we sometimes have to pay in science.

17The constraint ς̃ ∈
√

n (S − w̃?) can simply be implemented, numerically, by setting ς̃ ≥ −
√

n w̃? and 1′ ς̃ = 0.
18Note that w̃?

0 is not the weight of the riskless asset but some portfolio of N risky assets.
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n
N 250 2500 5000 10000 106

5 0.817 0.527 0.337 0.216 0

50 0.698 0.264 0.135 0.055 0

100 0.652 0.224 0.121 0.046 0

500 — 0.196 0.081 0.030 0

1000 — 0.154 0.070 0.018 0

Table 1: Probability that w̃?
n is a single-asset portfolio.

7. Conclusion

A quadratic approximation of log-returns works very well on a daily basis. Thus, in order to
find the BCRP, we may focus on the MVE, which can easily be computed. The corresponding
algorithm is very fast even if the number of dimensions is high and the results are even better
compared to Cover’s algorithm for the BCRP. However, in most practical applications, we
typically overestimate the expected out-of-sample performance of the MVE and the performance
of the MVOP. The same holds true for the expected out-of-sample log-return on the BCRP and
the expected log-return on the LOP.

Both the BCRP and the MVE exist and are unique under mild regularity conditions. Moreover,
they are strongly consistent and the same holds true for their in-sample and out-of-sample
performance measures. The given estimators for the LOP are even

√
n -consistent. In principle,

the asymptotic results derived in this work can be used for constructing hypothesis tests and for
computing confidence regions, but for this purpose one should apply a finite-sample correction,
which substantially improves the large-sample approximations.

However, it turns out that the impact of estimation risk concerning µ is tremendous in most
real-life situations. Estimating the LOP without prior information about expected asset returns
seems to be a futile undertaking. The estimators often lead to a single-asset portfolio even if
the LOP corresponds to the equally weighted portfolio and thus is well-diversified. The given
results confirm a general rule that has become folklore during the last decades, namely that
portfolio optimization fails on estimating expected asset returns.

A. The Asymptotic Covariance Matrix

Here, I derive the asymptotic covariance matrix B, which occurs in Section 5.2.2. We assume
that R1, R2, . . . are serially independent and normally distributed. Write

√
n
(
Σn − Σ

)
=
√

n
[
(Σn − µµ′)− (Σ− µµ′)︸ ︷︷ ︸

= Γ

]
,
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where Γ is the covariance matrix of R. The empirical covariance matrix of R1, R2, . . . , Rn is

Γn =
1
n

n

∑
t=1

(
Rt − µn

)(
Rt − µn

)′
=

1
n

n

∑
t=1

RtR′t − µnµ′n = Σn − µnµ′n .

Thus, we obtain √
n
(
Σn − Σ

)
=
√

n
(
Γn − Γ

)
+
√

n
(
µnµ′n − µµ′

)
.

Note that

√
n
(
µnµ′n − µµ′

)
=
√

n
(
µn − µ

)(
µn − µ

)′
+
√

n
(
µnµ′ + µµ′n − 2µµ′

)
,

where
√

n
(
µn − µ

)(
µn − µ

)′ vanishes (in probability) as n→ ∞ and

√
n
(
µnµ′ + µµ′n − 2µµ′

)
=
√

n (µn − µ)µ′ + µ
√

n (µn − µ)′.

Thus, we conclude that

√
n
(
Σn − Σ

)
=
√

n
(
Γn − Γ

)
+
√

n (µn − µ)µ′ + µ
√

n (µn − µ)′ + op(1) ,

where
√

n
(
µn− µ

)
and
√

n
(
Γn− Γ

)
are asymptotically independent. Moreover, the given terms

converge to a joint normal distribution. The asymptotic covariance matrix of
√

n vec
(
Γn − Γ

)
is
(
IN2 + KN2

)(
Γ⊗ Γ

)
, where the vec operator stacks the columns of a matrix on top of one

another, IN2 is the N2 × N2 identity matrix, KN2 is the N2 × N2 commutation matrix, and “⊗”
denotes the Kronecker matrix product. According to Magnus and Neudecker (1979, Eq. 2.1) we
have that √

n
(
Γn − Γ

)
w̃? =

(
w̃?′⊗ IN

)√
n vec

(
Γn − Γ

)
,

which means that (
w̃?′⊗ IN

)(
IN2 + KN2

)(
Γ⊗ Γ

)(
w̃?⊗ IN

)
is the asymptotic covariance matrix of

√
n
(
Γn − Γ

)
w̃?. Due to Neudecker (1969, Eq. 2.2) we

obtain (
w̃?′⊗ IN

)(
Γ⊗ Γ

)(
w̃?⊗ IN

)
=
(
w̃?′Γ⊗ Γ

)(
w̃?⊗ IN

)
=
(
w̃?′Γ w̃?

)
Γ

and from Theorem 3.1 in Magnus and Neudecker (1979) it follows that

(
w̃?′⊗ IN

)
KN2

(
Γ⊗ Γ

)(
w̃?⊗ IN

)
=

(
IN⊗ w̃?′)(Γ⊗ Γ

)(
w̃?⊗ IN

)
=

(
Γ⊗ w̃?′Γ

)(
w̃?⊗ IN

)
=
(
Γ w̃?

)(
w̃?′Γ

)
.

Hence, the asymptotic covariance matrix of
√

n
(
Γn − Γ

)
w̃? is

(
w̃?′Γ w̃?

)
Γ +

(
Γ w̃?

)(
Γ w̃?

)′.

24



Frahm, 2018 • Statistical Properties of Estimators for the Log-Optimal Portfolio

It remains to calculate the asymptotic covariance matrix of

√
n (µn − µ)µ′w̃? + µ

√
n (µn − µ)′w̃?.

The asymptotic covariance matrix of
√

n (µn − µ) is Γ, which leads to

(w̃?′µ)2 Γ + (w̃?′µ)(Γ w̃?)µ′ + (w̃?′µ)µ(Γ w̃?)′ +
(
w̃?′Γ w̃?

)
µµ′.

Thus, the asymptotic covariance matrix of
√

n
(
Σn − Σ

)
is

BΣ = (w̃?′µ)2 Γ + (w̃?′µ)(Γ w̃?)µ′ + (w̃?′µ)µ(Γ w̃?)′ +
(
w̃?′Γ w̃?

)(
Γ + µµ′

)
+
(
Γ w̃?

)(
Γ w̃?

)′,
which quantifies the estimation risk if the parameter µ was known to the investor. However,
in real life the expected asset returns are unknown and so B equals the asymptotic covariance
matrix of

√
n
(
µn − µ

)
−
√

n
(
Γn − Γ

)
w̃? −

√
n (µn − µ)µ′w̃? − µ

√
n (µn − µ)′w̃? ,

which can be rewritten as

√
n
(
µn − µ

)(
1− w̃?′µ

)
− µ
√

n (µn − µ)′w̃? −
√

n
(
Γn − Γ

)
w̃? .

By using the above arguments we conclude that

B = (1− w̃?′µ)2 Γ− (1− w̃?′µ)(Γ w̃?)µ′ − (1− w̃?′µ)µ(Γ w̃?)′ +(
w̃?′Γ w̃?

) (
Γ + µµ′

)
+
(
Γ w̃?

)(
Γ w̃?

)′.
Now, the reader can verify that the impact of estimating the expected asset returns is

Bµ = Γ−
[(

Γ w̃?
)
µ′ + 2(w̃?′µ)Γ + µ

(
Γ w̃?

)′].
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