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Abstract

In contrast to Approximate Factor Models (AFM), our proposed Quantile Factor Models

(QFM) allow for unobserved common factors shifting some parts of the distribution other

than the means of observed variables in large panel datasets. When such extra factors exist,

the standard estimation tools for AFM fail to extract them and their quantile factor loadings

(QFL). Two alternative approaches are developed to estimate consistently the whole factor

structure of QFM: (i) a two-step estimation procedure which is only valid when the same

factors shift the means and the quantiles; and (ii) an iterative procedure which is able to

extract (potentially) quantile-dependent factors and their QFL at a given quantile even when

both sets of factors differ. Simulation results confirm that our QFM estimation approaches

perform reasonably well in finite samples, while four empirical applications provide evidence

that extra factors shifting quantiles could be relevant in practice.
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1 Introduction

Following the key contributions by Ross (1976), Chamberlain and Rothschild (1983) and Connor

and Korajczyk (1986) to the theory of approximate factor models (AFM henceforth) in the

context of asset pricing, the analysis and applications of this class of models have proliferated

thereafter. As is well known, AFM imply that a panel Xit of N variables (units), each with

T observations, has the representation Xit = λ′iFt + eit, where λi and Ft are r × 1 vectors of

factor loadings and common factors, respectively, with r ≪ N , and eit are zero-mean weakly

dependent idiosyncratic disturbances which are uncorrelated with the factors.

The fact that it is easy to construct theories involving common factors, at least in a nar-

rative version, together with the availability of fairly straightforward estimation procedures for

AFM— e.g., via Principal Components Analysis (PCA hereafter),1 have led to their extensive

use in many fields of economics. Early applications of AFM abound in Aggregation Theory,

Consumer Theory, Business Cycle Analysis, Finance, Monetary Economics, and Monitoring and

Forecasting, among others. More recently, a conventional characterization of cross-sectional de-

pendence among error terms in Panel Data has relied on the use of a finite number of unobserved

common factors. These originate from economy-wide shocks that affect all units with different

intensities (loadings), in addition to idiosyncratic (individual-specific) disturbances. Interactive

fixed-effects models can be easily estimated by PCA (see Bai 2009) or by common correlated

effects (see Pesaran 2006). Likewise, the surge of Big Data technologies (machine learning,

multiple scaling, social network analysis, etc.) has made factor models a key tool in predic-

tive analytics, seeking to uncover patterns and capture relationships in very large datasets (see

Diebold 2012 for a survey).

Our departure point in this paper is to notice that the standard regression interpretation

of AFM as as a linear conditional mean model of Xit given Ft, that is, E(Xit|Ft) = λ′iFt,

entails two possibly restrictive features. On the one hand, PCA does not capture hidden factors

that may shift characteristics (moments or quantiles) of the distribution of Xit other than its

mean. On the other hand, the loadings λi are not allowed to vary across the distributional

characteristics of each unit i in the panel. A simple way of assessing the limitations of the

conventional formulation of AFM is to consider the factor structure in the following location-

scale shift model: Xit = αift+gtǫit, with gt > 0 and E(ǫit) = 0, where one factor shifts location,

ft, while a different factor shifts scale, gt.
2 This model can be rewritten in quantile regression

format as Xit = λ′i(τ)Ft + νit(τ), with 0 < τ < 1, λi(τ) = [αi, βi(τ)]
′, where βi(τ) represents

the quantile function of ǫit, Ft = [ft, gt]
′, νit(τ) = gt[ǫit − βi(τ)], and the conditional quantile

1See, inter alia, Bai (2003), Bai and Ng (2008b), Stock and Watson (2011).
2This model corresponds to Example 4 in sub-section 2.2 further below, which includes a list of illustrative

models that could be interpreted as potential Data Generating Processes (DGPs, hereafter) of Xit. Some of these
models will be also briefly overviewed in the rest of this Section.
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Qνit [τ |Ft] = 0.3 PCA will only extract the mean-shifting factor ft in this model, while it will

fail to capture (a rotation of) the scale-shifting factor gt and the quantile-dependent loadings

βi(τ) in its quantile regression representation.4

That said, our goal in this paper is to develop a common factor methodology which is flexible

enough to capture both the quantile-dependent loadings and those extra factors (e.g., βi(τ) and

gt in the previous example) that standard AFM tools are unable to recover. We propose a

new class of factor structures, labeled as Quantile Factor Models (QFMs hereafter), for which

estimation and inference are analyzed. In a nutshell, QFM could be thought of as capturing

the same type of flexible generalization that quantile regression techniques (QR henceforth)

represent for conditional mean linear regression models.

To help understand how this new methodology works, we introduce the QFM sequentially

in three different blocks. The first one deals with the case where the factors are not quantile

dependent but their loadings for each variable are allowed to vary throughout the conditional

distribution of Xit. These loadings are denoted as Quantile Factor Loadings (QFL hereafter) at

quantile τ (0 < τ < 1), with QXit
[τ |Ft] = λ′i(τ)Ft. They become analogues to factor loadings

in standard AFM, but allowing factors to exhibit heterogeneous effects across different parts of

the conditional distribution. In other words, the QFL at different quantiles λi(τ), labeled as

QFL processes, are functions of τ . The previous location-scale shift model with the restriction

that the same factor shifts location and scale (ft = gt): Xit = αift + ftǫit, with ft > 0 and

E(ǫit) = 0, provides an illustration of the type of model considered in this first block.5 The QFM

version of this example is Xit = λ′i(τ)Ft + νit(τ), with λi(τ) = αi + βi(τ) where, as before, βi(τ)

represents the quantile function of ǫit, Ft = ft, νit(τ) = ft[ǫit − βi(τ)], and Qνit(τ)[τ |Ft] = 0. A

straightforward two-step estimation procedure is proposed for this class of models which yields

consistent estimates the common factor ft and the QFL process λi(τ).

Inspired by the sequential approach adopted in the literature on factor-augmented regression

models (see, e.g., Bai and Ng 2006), PCA is used in the first step to estimate the common factors

Ft from Xit; in the second step, the QFL at various τs are estimated using QR for the time

series of each of the N units, having replaced the unobserved factors by their PCA estimates.

Although our setting differs from the one considered in factor-augmented models, we are able

to establish uniform consistency, the specific rate of convergence, and weak convergence of the

estimated QFL processes under rather general assumptions. The asymptotic distributions of

3Throughout the paper we use QW [τ |Z] to denote the conditional quantile of W given Z.
4As will be discussed further below in this section, for this specific DGP there is a very simple way of estimating

gt (once ft has been estimated by PCA). Yet, it will be argued that such estimation procedure fails to retrieve
the whole factor structure for slightly different DGPs than the one considered above, e.g., whenever gt is a vector
of factors instead of a single one.

5This restricted version of the location-scale shift model with two factors corresponds to Example 2 in sub-
section 2.2 below. Likewise, a conventional AFM (Example 1 in that subsection): Xit = αift + ǫit can be
expressed as the following QFM model: Xit = λ′

i(τ )Ft + νit(τ ), with λi(τ ) = [αi, βi(τ )]
′, with Ft = [ft, 1]

′,
νit(τ ) = ǫit − βi(τ ).
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the entire QFL process can then be used to test hypotheses in very general form. For instance,

one could test the null that the loadings are equal to pre-specified values for a given τ, for all

τs, or even more generally that they are equal, without pre-specifying their value.

Our two-step procedure provides an intuitive approach for estimation and inference in QFMs

where the same factors shift the means and the quantiles. However, it fails to extract the extra

factors when both sets of factors differ (see Examples 4, 5 and 7 in subsection 2.2), or when

some factors themselves are subject to quantile dependence (see Examples 8 and 9). To address

estimation in these more general class of models, a second block of the paper is devoted to propose

a novel fully iterative estimation procedure. This estimation approach relies on the minimization

of the standard check function in QR (instead of the standard quadratic loss function used in

AFM) to estimate jointly the common factors and the QFL at a given quantile, Ft(τ) and λi(τ),

respectively. The consistency of the such estimators is shown for N and T jointly going to

infinity. The challenge of this proof comes from having to deal with (N + T ) ∗ r incidental

parameters (where r ≥ 1 is the number of factors) and a non-smooth objective function.

Notice that location-scale shift models where ft 6= gt are behind a current line of research in

asset pricing which has been coined the “idiosyncratic volatility puzzle” by Ang et al. (2006).

This approach focuses on the co-movements in the idiosyncratic volatilities of a panel of asset

returns. Notice that the volatility co-movement does not arise from omitted factors in the

AFM but from assuming a genuine factor structure in the idiosyncratic volatility processes (see

Barigozzi and Hallin 2016, Herskovic et al. 2016 and Renault et al. 2017). This technique is valid

if the model corresponds to a DGP akin to the ones presented in the examples above; yet, when

there are co-movements in other moments or distributional characteristics of the returns, to

the best of our knowledge, our QFM iterative approach becomes the first estimation procedure

which can deal with these issues.

Finally, the third block of QFM is devoted to what we label the combined estimation ap-

proach. This estimation procedure is computationally simpler than the fully iterative approach

and can be applied when the direct objects of interest are the quantile-dependent factors (i.e.,

gt in the previous examples) and their QFL, rather than all factors. Going back to the location-

scale shift model with different factors: Xit = αift+ gtǫit, the idea is to first estimate (rotations

of) αi and ft by PCA, and then apply the iterative procedure to the residuals êit = Xit − α̂if̂t

to extract gt and its corresponding QFL process. As before, consistency of the estimators in the

combined estimation approach is shown for N and T going to infinity.

Admittedly, for this specific model, a much simpler procedure would be to retrieve gt from:

1

N

N∑

i=1

ê2it = g2t ·
1

N

N∑

i=1

ǫ2it +
1

N

N∑

i=1

(αift − α̂if̂t)
2 + 2gt ·

1

N

N∑

i=1

(αift − α̂if̂t)ǫit,
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where, under some assumptions, it holds that the last two terms are oP (1) and N
−1
∑N

i=1 ǫ
2
it →

E(ǫ2it). As a result, an estimator ĝt can be derived (up to a scalar) from the square root of

N−1
∑N

i=1 ê
2
it. However, while the combined estimation approach is able to recover the whole

QFM structure for more general DGPs than the previous model (see, e.g., Example 5 to 9 in

sub-section 2.2), it will be shown that the estimation procedure above fails to do so.

Summing up, our paper relies on three different but related econometric literatures: quantile

regressions, panel data and factor models. Our specific contributions to each of these research

areas can be summarized as follows:

(i) First, as in standard factor augmented regressions, the true factors are replaced by the

estimated factors when applying QR in the second step of our two-step procedure. However, the

standard conditions on the relative asymptotics of N and T allowing for the estimated factors

to be treated as known when the optimizing criteria are smooth object functions (e.g., the

minimization of sums of squared residuals) do not hold in our QFM setup. In effect, while these

conditions are T 1/2/N → 0 for linear factor-augmented regressions (see Bai and Ng 2006) and

T 5/8/N → 0 for non-linear factor-augmented regressions (Bai and Ng 2008a), lack of smoothness

in our check function criterion requires the stronger condition T 5/4/N → 0.

(ii) Second, our QFM setup contributes to the growing literature on the intersection of QR

and panel data models. The novelty here is that, while this literature deals with observable

regressors, we consider unobservable ones (the common factors).6 As a result, loading and

factors become unknown incidental parameters in QFM, and our iterative approaches (fully or

combined) provide a feasible way to estimate them consistently.

(iii) Lastly, the extra factors obtained by our iterative procedures can be used to improve

the monitoring and forecasting performance in any augmented regression setup, as well as to

help in the factor identification process, depending on the application at hand. For instance,

in finance these “new” factors could be interpreted as variance, skewness or kurtosis common

factors driving assets returns; with income data, they could represent common factors behind

income inequality; and with climate data these factors could represent common features behind

global extreme temperatures, etc.

Several empirical applications of the proposed estimation procedures are provided using

large panels of financial, macroeconomic and climate change data. As for financial data, we use

updated information on monthly US mutual fund returns, as well as the portfolio returns used

by Fama and French (1993) in their classical paper on common risk factors. As regards macro

data, we focus on the popular Stock and Watson (2016) dataset of quarterly economic indicators

for the US. Finally, the climate change data is drawn from the Climate Research Unit (CRU) at

University of East Anglia, which provides annual information from global temperatures across

6See, inter alia, Koenker (2004), Abrevaya and Dahl (2008), Graham et al. (2009), Lamarche (2010), Canay
(2011), Rosen (2012), Kato et al. (2012) and Harding and Lamarche (2014).
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different weather stations. Results based on the combined PCA-iterative estimation approach

point out to the existence of extra factors in these datasets, which cannot be captured by

standard PCA tools. These hidden factors shift the second moments (volatility) of the data

and, in some instances, we even find some evidence of extra factors shifting higher moments

(skewness and kurtosis) of the corresponding distributions. In particular, it is documented that

several of our estimated quantile-shifting factors are similar to those obtained from applying

PCA to the squared residuals (a procedure labeled PCA-SQ hereafter); as explained earlier,

under the assumption that the squared idiosyncratic error terms exhibit a factor structure, this

last procedure has been recently proposed in the empirical finance literature to capture the

so-called volatility factors (see, e.g, Renault et al. 2017). Yet, as will be shown below, the

PCA-SQ estimation procedure is more restrictive than our iterative approaches since it does

not yield separate identification of quantile-shifting factors when there are more than one. In

addition, it is shown that a generalization of this procedure to capture factor structures in higher

powers (e.g., cubed or fourth powers) of the idiosyncratic error terms does not work well. By

contrast, our fully iterative and combined estimation approaches achieve consistent estimators

of the relevant extra factors and QFL in all these instances.

The rest of the paper is organized as follows. Section 2 defines QFM and provides a list of

simple illustrative examples where the new factor methodology is the appropriate one. Section

3 presents the main asymptotic results for the two-step procedure focusing exclusively on the

estimation and inference of QFL processes. Section 4 proposes a fully iterative procedure when

the two-step procedure fails and proves the consistency of the loadings and factor estimators.

Section 5 presents the combined estimation approach based on PCA in the first stage and the

application of the iterative procedure to residuals in the second stage. Section 6 contains some

simulation results to evaluate the performance in finite samples of our estimation procedures

relative to other alternative approaches, such as PCA and PCA-SQ. Section 7 considers several

empirical applications using four large panel datasets, where we document the relevance of

factors shifting other moments of the distributions of the data rather than just their means.

Finally, Section 8 concludes and suggests several avenues for further research. Proofs of the

main results are collected in the Appendix.

2 Preliminaries, Notation and Examples

This section starts by introducing the main definitions and notations to be used throughout the

paper. Next, we show how to derive the QFM representation of several illustrative DGPs with

different factor structures.
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2.1 Quantile Factor Models

We consider a panel of observable random variables {Xit} generated by:

Xit = λ′i(Uit)Ft, where Uit ⊥ Fs, and Uit ∼ U [0, 1] (1)

for i = 1, . . . , N and s, t = 1, . . . , T . The common factors Ft is a r × 1 vector of unobservable

random variables, with Ft ∈ F ⊂ Rr for all t. Let T denote a closed subinterval of (0, 1), and

suppose that λi(τ) ∈ A ⊂ Rr for all i and τ ∈ T . If we further assume that the mapping

τ 7→ λ′i(τ)f is strictly increasing for all i and any f ∈ F , then λ′i(τ)Ft is the τth quantile of Xit

conditional on Ft since:

P
[
Xit ≤ λ′i(τ)Ft|Ft

]
= P

[
λ′i(Uit)Ft ≤ λ′i(τ)Ft|Ft

]
= P [Uit ≤ τ ] = τ.

In other words, model (1) implies:

QXit
[τ |Ft] = λ′i(τ)Ft for all τ ∈ T . (2)

Therefore, conditional on Ft, the quantiles of Xit have a factor model structure. As a result, we

label (1) as a QFM, while Λ(τ) = (λ1(τ), . . . , λN (τ))′ are denoted as QFL at τ .7

Similar representations for conditional quantiles can be found in Chernozhukov and Hansen

(2006, 2008), Canay (2011), and many other papers referenced therein. QFM also has an inter-

esting random coefficient interpretation (see Koenker 2005) as λ̃it = λi(Uit) could be interpreted

as random coefficients. Moreover, since the dependence among the elements of Ft is left unre-

stricted, the factors can include different transformations of the same variable, and thus model

(1) can approximate nonlinear conditional quantile functions arbitrarily well by increasing the

number of factors. In this sense, the linearity of the quantile factor model (1) is not as restrictive

as it might look.

2.2 Examples

In this section we provide a few illustrative examples of QFMs derived from different specifica-

tions of location-scale shift models. The objective is to show, via some simple models, that there

are cases where the standard AFM methodology is unable to obtain the full factor structure;

hence, an alternative approach is required. To simplify the exposition, it is assumed in these

examples that there is only one factor shifting location, ft. As regards the scale, it is assumed

7Notice that, for convenience, the factors Ft in (1) are assumed not to depend on the quantiles. As shown in
sub-section 2.2, this assumption is not restrictive for a wide set of illustrative models leading to representation
(1). Yet, as discussed also in that sub-section, there could be some other cases (e.g., Examples 8 and 9) where
factors may be quantile dependent. In such instances, Ft is a function of τ , i.e., Ft(τ ), and (2) is generalized to
QXit

[τ |Ft] = λ′

i(τ )Ft(τ ). A detailed analysis of this broader class of DGPs is deferred to Section 4 below.
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that either: (i) there is no factor structure (homoskedasticity), or (ii) the scale is affected by

same factor that affects location, ft = gt, or by a different factor, gt 6= ft (heteroskedasticity).

We also consider some examples where gt is a vector of factors, rather than a single one, as well

as cases where there is more than one error term. Finally, we discuss an example where there

is a factor structure in the higher moments of the idiosyncratic component and show that such

factor structures lead to quantile-dependent factors, Ft(τ), whose estimation requires the use of

our iterative estimation procedures.

Example 1. Location shift model. Xit = αift + ǫit, where {ǫit} are zero-mean i.i.d errors

independent of ft with cumulative distribution function (CDF) Fǫ. This is a standard AFM

which can be equivalently written as Xit = αift + Qǫ(Uit), where Qǫ(τ) = F
−1
ǫ (τ) = inf{c :

Fǫ(c) ≤ τ} is assumed to be uniquely defined for each τ ∈ (0, 1), and {Uit} are i.i.d and uni-

formly distributed over [0, 1]. Thus, this simple model has a QFM representation (1) by defining

λi(Uit) = [Qǫ(Uit), αi]
′ and Ft = [1, ft]

′, such that the loadings of the unit factor (intercepts) are

the only quantile-dependent objects in the QFM representation.

Example 2. Location-scale shift model (same sign-restricted factor). Xit = αift +

ftǫit, where ft > 0 for all t and {ǫit} are defined as in Example 1. This model has a QFM

representation (1) by defining λi(Uit) = Qǫ(Uit) + αi and Ft = ft, such that the slopes of the

factor ft are quantile dependent objects.

Example 3. Location-scale shift model (same sign-unrestricted factor). Xit = αift +

ftǫit, where {ǫit} are defined as in Example 1 and the sign of ft is unrestricted. When ft ≥ 0, the

conditional τ th quantile of Xit given ft is (Qǫ(τ)+αi)ft while, when ft < 0, the conditional τ th

quantile of Xit given ft is (Qǫ(1− τ)+αi)ft. Therefore, for some uniformly distributed variable

Uit this model has a QFM representation (1) with λi(Uit) = [αi + Qǫ(Uit), αi + Qǫ(1 − Uit)]
′,

Ft = [f+t , f
−
t ]′, f+t = ft · 1{ft ≥ 0} and f−t = ft · 1{ft < 0}. Notice that, when the distribution

of ǫit is symmetric, i.e., Qǫ(τ) = −Qǫ(1 − τ), this model is observationally equivalent to Xit =

αift + |ft| ǫit.

Example 4. Location-scale shift model (different factors). Xit = αift + gtǫit, where

{ǫit} are defined as in Example 1 and gt > 0. This model has a QFM representation (1) with

λi(Uit) = [αi, Qǫ(Uit)]
′ and Ft = [ft, gt]

′.

Example 5. Location-scale shift model with two scale factors. Xit = αift + (γ1ig1t +

γ2ig2t)ǫit, where {ǫit} are defined as in Example 1 and γ1ig1t + γ2ig2t > 0. This model has a

QFM representation (1) with λi(Uit) = [αi, γ1iQǫ(Uit), γ2iQǫ(Uit)]
′ and Ft = [ft, g1t, g2t]

′. This

is an extension of Example 4 to the case of more than one scale-shifting factors; in general we

could consider models of the form: Xit = α′
ift+(γ′igt)ǫit where ft and gt are vectors of dimension

larger than unity.

Example 6. Location-scale shift model with squared idiosyncratic errors. Xit = αift+

gtǫ
2
it, where {ǫit} ∼ i.i.d N(0, 1) and gt > 0. This model is observationally equivalent to Xit =
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αift+ gtvit where vit has a chi-square distribution with 1 degree of freedom. Thus, it has a QFM

representation (1) with λi(Uit) = [αi, Qv(Uit)]
′ and Ft = [ft, gt]

′, where Qv(Uit) is the quantile

function of vit.

Example 7. Location-scale shift model with two idiosyncratic errors. Xit = αift +

gtǫit + hteit, where ǫit and eit are two independent normal random variables with variances σ2ǫ

and σ2e . This model is observationally equivalent to Xit = αift +
√

g2t σ
2
ǫ + h2tσ

2
e · vit where vit

follows a standard normal distribution. Thus, it has a QFM representation (1) with λi(Uit) =

[αi,Φ
−1(Uit)]

′ and Ft = [ft,
√

g2t σ
2
ǫ + h2tσ

2
e ]

′, where Φ−1 is the quantile function of the standard

normal distribution.

Example 8. Location-scale shift model with an idiosyncratic error and its cube. Xit =

αift+gtǫit+cihtǫ
3
it, where ǫit is a standard normal random variable. Let gt, ht, ci be positive, then

Xit has an equivalent representation in form of (1) with λi(Uit) = [αi,Φ
−1(Uit), ciΦ

−1(Uit)
3]′

and Ft = [ft, gt, ht]
′. It follows that QXit

[τ |ft, gt, ht] = αift + gtΦ
−1(τ) + cihtΦ

−1(τ)3. In

particular, if ci = 1 for all i and noticing that the mapping τ 7→ Φ−1(τ)3 is strictly increasing,

then we have QXit
[τ |ft, gt, ht] = αift + Φ−1(τ) · [gt + htΦ

−1(τ)2], so that there exists a QFM

representation (1) with λi(τ) = [αi,Φ
−1(τ)]′ and Ft(τ) = [ft, gt + htΦ

−1(τ)2]′. Notice that in

this case, the second factor in Ft(τ), gt + htΦ
−1(τ)2, is quantile dependent.

Example 9. Location-scale shift model with an idiosyncratic error and its odd pow-

ers. Xit = αift + gtǫit + Σk∈Ohktǫ
k
it, where O is a sequence of odd numbers, such that k =

3, 5, ..,K, provides a generalization of Example 8. In this case λi(τ) = [αi,Φ
−1(τ)]′ and Ft(τ) =

[ft, gt +Σk∈OhktΦ
−1(τ)k−1]′ and, as in Example 8, the second factor is quantile dependent.

Not surprisingly, the standard AFM methodology based on PCA only works in Example 1.

In the remaining cases, PCA will yield consistent estimates of those factors shifting the means,

but it will fail to capture those which shift the quantiles and their corresponding QFL. For

instance, our two-step procedure works in Examples 1, 2 and 6 where all relevant factors shift

the mean of Xit. By contrast, Examples 4, 5, 7, 8 and 9 contain hidden factors that do not

affect the mean. In particular, Examples 8 and 9 lead to quantile-dependent factors. Thus, in

all these cases, only our iterative procedures manage to capture the whole QFM structure.8

3 Two-step Estimation Procedure

Note that DGP (1) can be rewritten as:

Xit = λ′i(τ)Ft + [λi(Uit)− λi(τ)]
′Ft = λ′i(τ)Ft + vit, (3)

8Notice that in Example 7, where there is a identification issue related to gt and ht, our iterative procedures
will only be able to capture ft and weighted sums of squares of gt and ht. Nonetheless, in these cases, our iterative
procedures still provide more information than PCA, which will only be able to extract ft.
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where vit = [λi(Uit) − λi(τ)]
′Ft and P [vit ≤ 0|Ft] = τ . The main objects of interest are the

common factors and the QFL at all τ ∈ T . If Ft were to be observed, using standard QR of Xit

on Ft leads to consistent and asymptotically normally distributed estimators of λi(τ) for each i

and τ ∈ T . However, since Ft are not observable, a feasible procedure is to estimate the factors

first, and then run QR of Xit on the estimated factors, F̂t.

Define λi = E[λi(Uit)], then model (1) can also be expressed as:

Xit = λ′iFt + [λi(Uit)− λi]
′Ft = λ′iFt + eit, (4)

where eit = [λi(Uit) − λi]
′Ft, and hence E[eit|Ft] = 0. Thus, if λi, Ft and eit satisfy some

assumptions (see Assumption 1 below), (4) can be viewed as an AFM, and the factors can be

consistently estimated by PCA as in Stock and Watson (2002) and Bai (2003).

Remark 1: Relative to a standard AFM (see Example 1 above), it is important to note that we

impose stronger assumptions: Uit needs to be uniformly distributed, orthogonal to Ft and, more

important, it is assumed to be i.i.d. across i and t. Thus, this is equivalent to assuming that ǫit

in Example 1 is i.i.d. across i and t. Notice, however, that as in Bai and Ng (2002) we could have

allowed for weak cross-sectional and serial correlations without much difficulty, as long as they are

not too strong. In particular, weak cross-sectional correlations would not affect our asymptotic

results for the two-step approach, although weak serial correlation may probably change the

variance of the two-step estimators. Yet, because independence of the idiosyncratic error terms

is essential for the proof of consistency in the iterative approach, we adopt this assumption in

the derivation of the results to facilitate comparability of both estimation procedures. Define

Xt = [X1t, . . . ,XNt]
′, et = [e1t, . . . , eNt]

′ and Λ = [λ1, . . . , λN ]′. Representation (4) then implies

the following characterization of the covariance matrix of Xt: E(XtX
′

t) = ΛΣFΛ
′ + Σe, where

ΣF = E[FtF
′
t ] and Σe = E[ete

′
t] is a diagonal matrix. �

The above representation leads us to the following two-step estimation approach (2SA, hence-

forth) for the common factors and the QFL at various τs:9

1. First, obtain the estimated factors F̂ . For example, following Bai (2003), one can use

PCA where F̂ = (F̂1, . . . , F̂T )
′ are the r eigenvectors (multiplied by

√
T ) of XX ′ associated

with the r largest eigenvalues, where X = {Xit}′ is a T ×N matrix collecting all the observed

variables.

2. For i = 1, . . . , N and each τ ∈ T , the QR estimator λ̂i(τ) is then defined as:

λ̂i(τ) = argmin
λ∈A

T−1
T∑

t=1

ρτ (Xit − λ′F̂t), (5)

9As will be discussed in Section 4 below, this two-step procedure turns out to fail if the data are generated by
the type of location and scale-shift models illustrated in Example 4 above.
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where ρτ (u) = u(τ−1{u < 0}) is the so-called check function which provides the basic optimizing

criterion in QR.

Since 2SA can be easily implemented in standard econometric packages, it becomes a very

convenient tool for practitioners. Furthermore, an observation of independent interest is that,

whenever the errors eit in model (4) have symmetric distributions around zero, our second step

at τ = 0.5 can be viewed as a median regression for estimating the factor loadings in an AFM,

while the estimated factor loadings in Bai (2003) are obtained by OLS regressions of Xit on F̂t.

As is well known, a generic problem of factor analysis is the indeterminacy of the factors and

factor loadings up to to a rotation, which also pertains to the QFMs defined above. In effect,

for any invertible r × r matrix A, model (1) is observationally equivalent to (λ′i(Uit)A
−1)(AFt).

Therefore, identification of the factors and the QFL requires r2 restrictions to pin down a

unique rotation matrix. Although our main results in the next section are stated for a (possibly

random) rotation of λi(τ), for illustrative purposes we use the normalization rule implicitly

adopted in PCA estimation, labeled as PC1 by Bai and Ng (2013): T−1
∑T

t=1 FtF
′
t = Ir and

N−1
∑N

i=1 λiλ
′
i is diagonal. Other alternative normalizations proposed by these authors (PC2 or

PC3) could have been used, and the derivation of the corresponding asymptotic results would

be straightforward.10

3.1 Asymptotic Results

We next present asymptotic results regarding consistency and weak convergence of the QFL

processes when 2SA is used to estimate the whole factor structure. In addition, we discuss how

this procedure fails to retrieve the QFL process when the estimated factors in the first step are

only consistent for a subspace of the factors in the QFM.

3.1.1 Consistency

To establish the uniform consistency of the estimated QFL, we impose the following assumptions

for each i = 1, . . . , N :

Assumption 1. Suppose that the observed data {Xit} are generated by model (1) and

(i) The sequence {Ft} is strictly stationary and m-dependent with E‖Ft‖4 < ∞, and ΣF =

E(FtF
′
t ) > 0.

(ii) The random variables {Uit} are uniformly distributed over [0, 1] and independent across i

and t, and Uit is independent of Fs for all i, t, s.

10PC2 assumes that T−1
∑T

t=1
FtF

′

t = Ir and [λ1, . . . , λr]
′ is a lower triangular matrix, while PC3 assumes

[λ1, . . . , λr]
′ = Ir. All these sets of restrictions imply different rotation matrices but one has to resort to specific

economic theories to determine which one becomes more appropriate.
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(iii) There is a compact set A ⊂ Rr such that λi(τ) ∈ A for all i and τ ∈ T , and there is a

ΣΛ > 0 such that ‖N−1
∑N

i=1 λiλ
′
i − ΣΛ‖ → 0 as N → ∞. There is a constant λ̄ < ∞

such that ‖λi‖ ≤ ‖λ̄‖ for all i. Define uit = λi(Uit)− λi, then E[u4it] <∞ for all i, t.

(iv) The eigenvalues of ΣFΣΛ are distinct.

(v) The conditional density fX(x|Ft = f) exists, and is bounded and uniformly continuous in

x for all f ∈ F ; J(λi(τ)) = E[fX(λi(τ)
′Ft|Ft)FtF

′
t ] is positive definite for all τ .

Define HNT = (Λ′Λ/N)(F ′F̂ /T )V −1
NT , where Λ′ = [λ1, . . . , λN ], F ′ = [F1, . . . , FT ], F̂

′ =

[F̂1, . . . , F̂T ], and VNT is a r×r diagonal matrix with the eigenvalues of (NT )−1XX ′ in decreasing

order. Further, define H0 = Σ
1/2
Λ ΥV −1/2, where V is a diagonal matrix with the eigenvalues

of Σ
1/2
Λ ΣFΣ

1/2
Λ in decreasing order, and Υ is a matrix of corresponding eigenvectors. It can be

shown that:

Theorem 1 (Uniform Consistency). Under Assumption 1, supτ∈T ‖λ̂i(τ)−H−1
NTλi(τ)‖ = oP (1)

and supτ∈T ‖λ̂i(τ)−H−1
0 λi(τ)‖ = oP (1) for all i = 1, . . . , N .

Remark 2: The proof of Theorem 1 involves two steps. First, it is shown that T−1
∑T

t=1 ρτ (Xit−
λ′F̂t) converges to E[ρτ (Xit − λ′H ′

0Ft)] uniformly in τ and λ. Next, given that H−1
0 λi(τ) is

the unique minimizer of E[ρτ (Xit − λ′H ′
0Ft)] by Assumption 1(v) and that λ̂i(τ) is defined

as the minimizer of T−1
∑T

t=1 ρτ (Xit − λ′F̂t), the uniform consistency of λ̂i(τ) for H−1
0 λi(τ)

follows from Lemma B.1 of Chernozhukov and Hansen (2006), which yields a generalization

of the consistency of M-estimators to estimated processes. A key result to show the uniform

convergence of T−1
∑T

t=1 ρτ (Xit − λ′F̂t) to E[ρτ (Xit − λ′H ′
0Ft)], as well as to prove Theorem 2

below, is the following consistency result for the estimated factors: T−1
∑T

t=1 ‖F̂t −H ′
NTFt‖2 =

oP (1). This result emerges as a direct consequence of Theorem 1 in Bai and Ng (2002) if one

shows that the factors, loadings λi and the error terms eit in equation (4) all satisfy Assumptions

A to D in their paper. Notice, however, that the error terms eit = (λi(Uit)−λi)′Ft in our setting

violate Assumption C.5 of Bai and Ng (2002), which requires:

E

∣
∣
∣
∣
∣
N−1/2

N∑

i=1

[eiteis − E(eiteis)]

∣
∣
∣
∣
∣

4

<∞ for all t, s. (6)

To see this, consider the simple case where r = 1. When t = s, we have:

E

∣
∣
∣
∣
∣
N−1/2

N∑

i=1

[eiteis − E(eiteis)]

∣
∣
∣
∣
∣

2

= N−1
N∑

i=1

N∑

j=1

(

E[e2ite
2
jt]− E[e2it]E[e

2
jt]
)

.

Since in our setup, E[e2ite
2
jt]−E[e2it]E[e

2
jt] = E[u2it]E[u

2
jt]
(
E[F 4

t ]− (E[F 2
t ])

2
)
6= 0 for any i, j, unless

F 2
t is a constant, the previous expression cannot be bounded, and thus Assumption C.5 of Bai

and Ng (2002) is not satisfied. As shown in the Appendix, imposing the stronger condition
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E‖Ft‖4 <∞ allows us to prove that Theorem 1 of Bai and Ng (2002) still holds in our model.11

�

3.1.2 Weak Convergence

To establish the limiting distribution of the estimated QFL processes, we impose the following

additional assumptions:

Assumption 2. (i) E‖Ft‖8 < ∞; (ii) T 5/4/N → 0 as N,T → ∞; (iii) For each i ≤ N , the

eigenvalues of JH0
(λi(τ)) = H ′

0J(λi(τ))H0 are bounded below by a constant ρ∗ > 0 uniformly in

τ .

Define ϕτ (u) = 1{u < 0}−τ , let Br be a vector of r independent standard Brownian Bridges,

and let ℓ∞(T ) be the space of bounded functions on T , then:

Theorem 2 (Weak Convergence). Under Assumptions 1 and 2, it holds that, for each i,

JH0
(λi(·)) ·

√
T [λ̂i(·)−H−1

NTλi(·)] = −ViT (·) + oP (1) in ℓ∞(T ),

where ViT (·) = T−1/2
∑T

t=1 ϕτ (Xt − λi(·)′Ft)H
′
0Ft converges weakly to Br(·) in ℓ∞(T ).

Remark 3: Bai and Ng (2008a) show that, for extremum estimators with twice continuously dif-

ferentiable object functions, the estimated factors can be treated as known regressors if (among

other conditions) T 5/8/N → 0. By contrast, the estimation-effects-free property of our estima-

tors requires a much larger N compared to T , i.e., T 5/4/N → 0, because the object function

considered here is not smooth. Indeed, a necessary condition for the estimated factors to have

no distributional effects is:

√
T · max

1≤t≤T
‖F̂t −H ′

NTFt‖ = oP (1). (7)

In contrast, in Bai and Ng (2008a), due to their smooth object function, it suffices to have:

(
OP (1) +OP (

√
T/

√
N)
)
· max
1≤t≤T

‖F̂t −H ′
NTFt‖ = oP (1).

We establish in the Appendix the following uniform convergence rate for the estimated factors:

max
1≤t≤T

‖F̂t −H ′
NTFt‖ = OP (T

−5/8) +OP (T
1/8/

√
N), (8)

illustrating that the required condition T 5/4/N → 0 is therefore a direct consequence of (7) and

(8). �

11Assumption A of Bai and Ng (2002) does require E‖Ft‖4 < ∞, which is only needed to prove Theorem 2 in
their paper. To prove their Theorem 1, E‖Ft‖2 < ∞ is sufficient.
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Remark 4: Suppose that T = [ǫ, 1 − ǫ] for some ǫ > 0. For small values of ǫ, Theorem 2

may not provide a good approximation for the finite sample distributions of the estimators.

Usually, the Gaussian approximation performs well for ǫ > 30/T (e.g., when T = 200, ǫ > 0.15)

while for more extreme quantiles the small sample distributions are better approximated by the

asymptotic distributions of extremal conditional quantiles (see Chernozhukov 2005). �

As mentioned earlier, given that the asymptotic theory above involves a random rotation

matrix of the original QFL, H−1
NT , inference about the individual elements of the QFL process

relies on the PC1 identification restrictions in Bai and Ng (2013), which we repeat here for

convenience:

T−1
T∑

t=1

FtF
′
t = Ir and N−1

N∑

i=1

λiλ
′
i is diagonal. (9)

Hence, PC1 implies that the representation in Theorem 2 still holds if we replace H−1
NT by Ir.

Formally, we have:

Corollary 1. Under Assumptions 1 and 2 , the following representation holds for each i if the

restrictions in (9) are satisfied for large N and T :

JH0
(λi(·)) ·

√
T [λ̂i(·)− λi(·)] = T−1/2

T∑

t=1

ϕτ (Xt − λi(·)′Ft)H
′
0Ft + oP (1) in ℓ

∞(T ). (10)

The result above follows directly from Theorem 2 by noting that, as shown in Bai and Ng

(2013), H−1
NT − Ir = OP (min[N,T ]−1) under restrictions (9).

Theorem 2 also allows us to construct confidence intervals and make inference for the entire

QFL process whenever uniform (in τ) consistent estimators of JH0
(λi(τ)) are available. Similar

to Powell (1986), the following estimator is considered:

Ĵ(λ̂i(τ)) =
1

2hT · T
T∑

t=1

{

1{|Xit − λ̂i(τ)
′F̂t| ≤ hT }F̂tF̂

′
t

}

, (11)

and we need to make an additional assumption:

Assumption 3. The bandwidth parameter hT satisfies: hT → 0 and hT · T 1/2 → ∞ and

‖HNT −H0‖/hT = oP (1).

Then, the following result shows that weak convergence still holds when JH0
(λi(τ)) is replaced

by its estimate.

Theorem 3. Under Assumptions 1 to 3, it holds that supτ∈T
∥
∥Ĵ(λ̂i(τ))− JH0

(λi(τ))
∥
∥ = oP (1),

and thus for each i ≤ N , Ĵ(λ̂i(·)) ·
√
T [λ̂i(·)−H−1

NTλi(·)] ⇒ Br(·) in ℓ∞(T ).

From Theorem 3, confidence bands can be derived for H−1
NTλi(τ). For example, when r = 1,
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the α level confidence band is λ̂i(τ) ± T−1/2Ĵ(λ̂i(τ))
−1Cα, where Cα is the αth quantile of

supτ∈T |B(τ)|. Theorem 3 also implies that for each i ≤ N and each τ ∈ T ,

[τ(1− τ)]−1/2 · Ĵ(λ̂i(τ)) ·
√
T [λ̂i(τ)−H−1

NTλi(τ)] N (0, Ir). (12)

3.1.3 Hypothesis Testing

The asymptotic results provided in the previous subsection allow us to test various hypotheses

of the form Rλi(τ) = c about the QFL processes, once the identification restrictions in (9) have

been imposed to pin down the rotation matrix.12 First, it is straightforward to construct a Wald

test for H0 : Rλi(τ) = c for a given τ based on (12) and Corollary 1. Second, based on Theorem

3 and Corollary 1, it is easy to construct a Kolmogorov-Smirnov (KS) test for the hypothesis:

H0 : λij(λ) = λij for all τ ∈ T

for 1 ≤ j ≤ r, where λij is known constant.

A more interesting class of hypotheses is that:

H0 : λij(λ) = λij for all τ ∈ T

for 1 ≤ j ≤ r, where λij is an unknown constant. For simplicity, we focus again on the case

where the number of PCA factors is r = 1, though the following results can be easily generalized

to models with r > 1. In line with our discussion in section 3.1.2, the aforementioned estimation

results lead us to consider the following particular specification of a location-scale shift model:

Xit = λiFt + (1 + γiFt)ǫit.

With E[ǫit|Ft] = 0, this is a conditional mean factor model with the same set of common factors

shifting location and scale. In this model, the null hypothesis of constant factor loadings across

quantiles is equivalent to:

H0 : γi = 0.

Let λ̂i(·) be the estimated factor loading process for individual i, then it is natural to consider the

process λ̂i(·)−λi. However, since λi is unknown, we base our test on the process λ̂i(·)− λ̂i(0.5),
where λ̂i(0.5) can be replaced by any consistent estimator of λi under H0.

Let F̂t be the PCA estimator of Ft, and define:

θ̂i(τ) = [α̂i(τ), λ̂i(τ)]
′ = arg min

θ∈R2

T∑

t=1

ρτ (Xit − θ′(1, F̂t)) for all τ ∈ T .

12An exception is the hypothesis λi(τ ) = 0 for a given τ , which is invariant to rotations.
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Then, as in the proof of Theorem 2, we can show that, under H0 and the previous assumption:

fǫ(Qǫ(·)) · (1− h20(EFt)
2)1/2 ·

√
T (λ̂i(·)− h−1λi(·)) ⇒ B(·) in ℓ∞(T ),

where λi(τ) = λi + γiQǫ(τ), h = (N−1
∑N

i=1 λ
2
i )(T

−1
∑T

t=1 FtF̂t)/v, h0 = (E[F 2
t ])

−1/2, and v is

the largest eigenvalue of (NT )−1XX ′. Then, under H0, it follows that,:

v̂T (·) = fǫ(Qǫ(·)) · (1− h20(EFt)
2)1/2 ·

√
T (λ̂i(·)− λ̂i(1/2))

= fǫ(Qǫ(·)) · (1− h20(EFt)
2)1/2 ·

√
T (λ̂i(·)− h−1λi) + fǫ(Qǫ(·)) · OP (1), (13)

where the first term on the right converges weakly to a Brownian bridge, and the second term

depends on the distribution of ǫit, which is usually unknown. Note that the second term, which

makes the standard KS test supτ∈T |v̂T (τ)| invalid, is due to the estimation of the unknown

parameter λi, an issue which is known in the literature as Durbin’s problem (see Durbin 1973

and Koenker and Xiao 2002). Following Koenker and Xiao (2002), one could easily make use

of the Khamaladze transformation to purge the estimation effects and get a nuisance-parameter

free test.

4 Fully Iterative Estimation Procedure

The 2SA estimation procedure presented above relies on the assumption that a QFM can be

transformed into an AFM, from which all the factors can be extracted by PCA. One key restric-

tion is Assumption 1(iii), which requires that the factors shifting the quantiles of X should also

shift the means of X. To see this, consider Example 4 again: Xit = αift + gtǫit, where different

factors affect location and scale. Recall that this model can be rewritten in QFM format as

Xit = λ′i(Uit)Ft, with λi(Uit) = [αi, Qǫ(Uit)]
′ and Ft = [ft, gt]

′. Hence, λi = E[λi(Uit)] = [αi, 0],

implying the violation of Assumption 1(iii) since N−1
∑N

i=1 λiλ
′
i fails to be asymptotically full

rank. As a result, factor gt cannot be recovered from the first-step PCA estimators. Therefore,

in general, the first step in 2SA can only consistently estimate those factors that shift the means.

However, if we assume that the median of ǫit is equal to 0, then for each τ ∈ (0, 1) and

τ 6= 0.5 we have:

QXit
[τ |Ft] = αift +Qǫ(τ)gt,

where Ft = [ft, gt]
′, and the loadings λi(τ) = [αi, Qǫ(τ)]

′ satisfy Assumption 1(iii) if αi have

enough cross-sectional variations. Even though the factor gt plays no special role in the AFM

form of the model (since it does not shift the means of X), the above expression implies that the

quantiles of X across individual units at each τ are informative about the factor gt. Moreover,

in view of the discussion about Examples 8 and 9 above, where the second factor is a function
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of τ , let us now allow for the possibility that, not only the loadings, but also the factors could

be quantile dependent. To address these issues we consider in this section the following more

general setting for a given τ ∈ (0, 1):

Xit = λi(τ)
′Ft(τ) + vit(τ), (14)

where the errors vit(τ) satisfy:

P [vit(τ) ≤ 0|Ft(τ)] = τ,

and λi(τ) and Ft(τ) are r(τ)× 1 vector of factor loadings and factors at quantile τ . Thus, the

main novelty as regards our first definition of QFM in Section 1 is that the factors and the

number of factors are also allowed to differ across τ . Besides accounting for Examples 8 and 9,

this new setup trivially nests all other examples listed above. For instance, even in the case of

Example 4, there is quantile variation in the number of factors since, when τ 6= 0.5, we have

r(τ) = 2 and Ft(τ) = [ft, gt]
′ while, when τ = 0.5, we have r(τ) = 1 and Ft(τ) = ft.

To simplify the notations, we suppress the dependence of Ft(τ), λi(τ), r(τ) and vit(τ) on τ in

the following discussion, and write F = [F1, . . . , FT ]
′ and Λ = [λ1, . . . , λN ]′. Also for simplicity,

the number of quantile factors r is assumed to be known at τ , so F and Λ are T × r and

N × r matrices respectively. To avoid confusions, let F 0 = [F 0
1 , . . . , F

0
T ]

′ and Λ0 = [λ01, . . . , λ
0
N ]′

denote the true values of the factor and loadings. Moreover, following the fixed-effects approach

in dealing with incidental parameters, we treat F 0 and Λ0 as fixed parameters to estimate.

Alternatively, F 0 and Λ0 can be viewed as random variables, but all the assumptions and

results in the sequel should be understood as being conditional on F 0 and Λ0.

As in standard QR, we consider the following check function to replace the least-square

object function of the PCA estimators:

SNT (F,Λ) = (NT )−1
N∑

i=1

T∑

t=1

ρτ (Xit − λ′iFt).

Let A and F be two subsets of Rr. The estimators are defined as:

[F̂ , Λ̂] = argmin
Ft∈F ,λi∈A

SNT (F,Λ), (15)

where F̂ = [F̂1, . . . , F̂T ]
′, Λ̂ = [Λ̂1, . . . , Λ̂N ]′. Starting with any T × r matrix F̂ (1), the factors in

problem (15) can be estimated using the following fully iterative approach (FIA, hereafter):

1. Given F̂ (m) = [F̂
(m)
1 , . . . , F̂

(m)
T ], using QR of {Xit}Tt=1 on F̂ (m) to estimate Λ̂

(m+1)
i for

i = 1, . . . , N .

2. Given Λ̂(m+1) = [Λ̂
(m+1)
1 , . . . , Λ̂

(m+1)
N ], using QR of {Xit}Ni=1 on Λ̂(m+1) to estimate F̂

(m+1)
t

for t = 1, . . . , T .
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3. Repeat Steps 1 and 2 until F̂ (k) and F̂ (k+1) become close enough.

There are two main difficulties in deriving the asymptotic properties of this iterative esti-

mator. First, there is the presence of incidental parameters along both dimensions, and second

there is the non-smoothness of the object function. There are some recent contributions in the

literature on panel data models dealing with simplified versions of problem (15). For example,

Fernández-Val and Weidner (2016) and Chen et al. (2014) consider bias-corrected fixed-effects

estimators for nonlinear panel data models with both individual and time effects. Similar to our

QFM (with r = 1), their models contain N+T incidental parameters, but their object functions

are assumed to be smooth and strictly concave. Likewise, Galvao and Kato (2016) analyze QR

for panel data models where the check functions are replaced by some smooth object functions;

yet, only N incidental parameters are considered in their model. In sum, Problem (15) requires

specific analysis since it involves both a non-smooth object function and (N + T ) ∗ r incidental

parameters. Due to these difficulties, we focus in the sequel on the derivation of the consis-

tency properties of our iterative estimation procedure which, to our knowledge is a novel result,

while the derivation of the asymptotic distribution of the estimated factors and QFL under this

approach is left for further research.

To derive the consistency properties of the above estimator, the following assumptions are

needed:

Assumption 4. (i) A and F are two compact subsets of Rr. λ0i ∈ A and F 0
t ∈ F for all i ≤ N

and t ≤ T .

(ii) There exists two positive definite matrices ΣΛ and ΣF such that N−1Λ0′Λ0 → ΣΛ as N → ∞
and T−1F 0′F 0 → ΣF as T → ∞.

(iii) P [vit ≤ 0] = τ for all i, t. {vit} are serially and cross-sectionally independent, their density

functions {fit} exist and are continuous. For any compact set C, there exists fC > 0 such that

infc∈C fit(c) ≥ fC for all i, t.

(iv) There exists a finite constant M such that E|vit−Evit|m ≤ m!Mm for all i, t and all m ≥ 1.

Assumption 4(i) is not restrictive when F and Λ are both treated as fixed parameters, and

4(ii) is a standard assumption in factor models; 4(iii) is the defining assumption for QFM. 4(iv)

restricts the speed at which the central absolute moments of the error terms increase, but this

is satisfied by Gaussian and many other standard distributions. Note that although we require

the error terms to be independent, they are not assumed to be identically distributed. In fact,

as we can see in Example 4, for given ft and gt, the errors vit = gtǫit are identically distributed

across i but not across t.

Let PA = A(A′A)−1A′ be the projection matrix of A. Then, in line with Bai (2003), it can

be shown that the estimated factors and factor loadings at quantile τ are consistent for F 0 and

Λ0 in the following sense:
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Theorem 4. Suppose that Assumption 4 holds, then we have:

‖PF̂ − PF 0‖ = oP (1) and ‖PΛ̂ − PΛ0‖ = oP (1).

The above result ensures that the space of our estimated factors is close to the space spanned

by the true factors shifting the quantiles of X. Going back to Example 4, this means that our

estimated factors will be consistent for both ft and gt, because gt shifts the quantiles (except

the median) of X. On the contrary, the PCA estimators are only able to retrieve ft, because gt

does not shift the mean of X.

Remark 5: Define MA = I − PA, then we have:

‖MF 0F̂ /
√
T‖ = ‖(MF 0 −MF̂ )F̂ /

√
T‖ = ‖(PF 0 − PF̂ )F̂ /

√
T‖ ≤ ‖PF 0 − PF̂ ‖ · ‖F̂ /

√
T‖.

Under the normalization F̂ ′F̂ /T = I, it follows from Theorem 4 that ‖MF 0F̂ /
√
T‖ = oP (1), or

equivalently,

1

T

T∑

t=1

‖F̂t − ĤF 0
t ‖2 = oP (1),

where Ĥ = (F̂ ′0/T ) · (F 0′F 0/T )−1 is a random rotation matrix. The above result is similar to

Theorem 1 of Bai and Ng (2002). �

5 Combining PCA and the Iterative Procedure

The previous section shows that the space formed by the mean and quantile-shifting factors can

be consistently estimated by FIA. However, in those cases where the quantile-shifting factors

(e.g., the volatility factor in the empirical finance literature) and their QFL are the only objects of

interest, it is feasible to estimate the spaces of the mean factors and quantile factors separately

by means of a computationally simpler procedure. This can be achieved by combining PCA

and FIA in a sequential way, leading to what we label the combined estimation approach (CA

hereafter). For instance, in Example 4: Xit = αift+gtǫit, with ft 6= gt, the CA has the advantage

that we can estimate the spaces of ft and gt separately, while FIA will estimate the space of [ft gt]

jointly, i.e., linear combinations of ft and gt. In effect, from PCA we could retrieve estimates

of ft and αi, to obtain residuals Xit − α̂if̂t. Applying the iterative approach to these residuals

would then yield an estimate of gt and its QFL. Likewise, in Example 2: Xit = αift+ftǫit, PCA

and the FIA applied to the residuals would yield two estimates of the same ft, the first one with

constant loadings while the second one with different loadings across τ . In this case, the space

of [ft gt] = [ft ft] does not have full rank, but this is not a problem for CA since it will extract

the only quantile-shifting factor, ft.
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The above arguments can be extended to the case where there are several location and

scale-shifting factors by considering the following more general model:

Xit = λ′iFt + eit,

where eit satisfies E[eit|Ft] = 0, with λi, Ft ∈ Rp. Suppose that:

eit = γ′iGt + vit for all i, t,

for some γi, Gt ∈ Rk, where P [vit ≤ 0] = τ for some τ ∈ (0, 1), so that Qeit [τ ] = γ′iGt.

For simplicity, it is assumed that the mean-shifting factors Ft and the quantile-shifting factors

Gt do not have elements in common, and that their dimensions (p and k, respectively) are

known. As mentioned above, one can estimate (the space of) both sets of factors separately by

implementing the following two steps. First, we obtain the estimated residuals: êit = Xit− λ̂′iF̂t,

where λ̂′i and F̂t are simply the PCA estimators (with PC1 restrictions) as defined in Section 3.

Next, the iterative approach is applied to êit to estimate the quantile factors.

In particular, let A and G be subsets of Rk, and define:

[Ĝ, Γ̂] = argmin
γi∈A,Gt∈G

(NT )−1
N∑

i=1

T∑

t=1

ρτ (êit − γ′iGt).

Again, we treat G = [G1, . . . , GT ]
′ and Γ = [γ1, . . . , γN ]′ as fixed parameters, and make the

following assumptions:

Assumption 5. (i) There exists a constant M such that E‖Ft‖4 ≤ M and ‖λi‖ ≤ M for all

i, t. There exists positive definite matrices ΣF and ΣΛ such that ‖T−1
∑T

t=1 FtF
′
t −ΣF‖ = oP (1)

and ‖N−1
∑N

i=1 λiλ
′
i −ΣΛ‖ = o(1).

(ii) {eit} are independent random variables with zero means, and there exists a finite constant

M such that E|eit|m ≤ m!Mm for all i, t and all m ≥ 1.

(iii) A and G are two compact subsets of Rk, and γi ∈ A and Gt ∈ G for all i, t.

(iv) There exists two positive definite matrices ΣΓ and ΣG such that N−1Γ′Γ → ΣΓ as N → ∞
and T−1G′G→ ΣG as T → ∞.

(v) P [vit ≤ 0] = τ for all i, t. The density functions of vit : {fit} exist and are continuous. For

any compact set C, there exists fC > 0 such that infc∈C fit(c) ≥ fC for all i, t.

Then, it can be shown that :

Theorem 5. Under Assumption 5, the estimated mean factors are consistent in the sense that:

T−1
∑T

t=1 ‖F̂t −H ′
NTFt‖ = oP (1), and the estimated quantile factors are consistent in the sense

that: ‖PĜ − PG‖ = oP (1), where the rotation matrix HNT is defined as in Theorem 1 and the

projection matrix PA is defined as in Theorem 4.
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Remark 6: As mentioned in the Introduction, there have been recent attempts in the empirical

finance literature to estimate some extra factors related to idiosyncratic volatility through the

PCA-SQ approach (see, inter alia, Barigozzi and Hallin 2016, Herskovic et al. 2016 and Renault

et al. 2017). The basic underlying model in this stream of the literature resembles Example 4:

it allows for a single quantile-shifting factor (called the volatility factor) and possibly several

mean-shifting factors. In particular, in line with our CA, Renault et al. (2017) first use PCA to

estimate the mean factors and obtain the residuals êit, and then they propose to use the first

principal component of ê2t = [ê21t, . . . , ê
2
Nt]

′ as an estimate of the volatility factor. This approach

can be justified by the observation that the squared idiosyncratic errors in Example 4 have an

AFM structure with g2t as the common factor:

u2it = g2t ǫ
2
it = σ2i g

2
t + vit,

where uit = gtǫit represents the idiosyncratic error, σ2i = E[ǫ2it], and vit = (σ2i − E[ǫ2it])g
2
t with

E[vit|gt] = 0. However, when there are more than one quantile-shifting factors, like in Example

5, the PCA-SQ approach will not be able to estimate the space of all the quantile factors. In

effect, the squared idiosyncratic errors of Example 5 can be written as:

(γ1ig1t + γ2ig2t)
2ǫ2it = σ2i γ

2
1i · g21t + σ2i γ

2
2i · g22t + σ2i γ1tγ2t · g1tg2t + vit,

where E[vit|g1t, g2t] = 0. Thus, the first principal component of the squared residuals in the

PCA-SQ approach will converge to a linear combination of g21t, g
2
2t and g1tg2t, while our CA

consistently estimates the space of [g1t, g2t]. �

6 Simulations

6.1 Estimation of QFL Using the Two-Step Procedure

To evaluate the finite sample performance of our 2SA estimator, we consider Example 2 ( with

the same common factor shifting location and scale) as the DGP, namely:

Xit = λift + ftǫit,

where λi and ǫit are drawn independently from N (0, 1), and that ft ∼ i.i.d lognormal(0, 0.589).

This DGP implies a linear QFM of form (1) with QFL defined as: λi(τ) = λi + Φ−1(τ). The

histograms of [τ(1−τ)]−1/2 ·Ĵ(λ̂1(τ))·
√
T [λ̂1(τ)−H−1

NTλ1(τ)] from 5000 simulations are reported,

together with the density function of a N (0, 1) random variable. The sample sizes are T =

100, 200 and N = 100, 200, 500, 1000, while the QFL estimates are displayed for a small subset

of relevant quantiles, namely, τ = 0.25, 0.50, 0.75.
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Histograms and densities are displayed in Figures 1 to 3 for the above-mentioned three

quantiles. In line with our weak convergence results in Section 3, it can be inspected that the

histograms of the constructed statistics become closer to the benchmark density functions of a

standard normal random variable as N and T grow. Yet, these approximations are slightly less

accurate for the quantiles at the tails that at the middle of the distribution. These differences

could be due to the choice of the bandwidth parameter hT which, as in nonparametric density

estimations, has a significant influence on the distributions of the test statistics. In our simu-

lations we simply set hT = T−1/3, so there should be enough room for improvements in these

approximations if hT is allowed to be data dependent, an issue which is left for further research.

6.2 A Comparison of Different Estimation Approaches

To illustrate the advantages of using FIA relative to 2SA estimators when the latter fails to

retrieve all relevant information, we generate data for N = T = 20, 50, 100, using this time

Example 4 as the DGP: Xit = αift+gtǫit, where ft ∼ i.i.d N (0, 1), gt ∼ i.i.d lognormal(0, 0.589)

and αi, ǫit ∼ i.i.d N (0, 1). Ideally, we would expect the FIA estimators to capture the two factors

ft and gt at τ 6= 0.5, while the 2SA estimators would only extract the mean-shifting factor ft.

To check whether this prediction holds, we use 2SA and FIA to estimate two factors in each

case; then we compare how well they fit the generated factors ft and gt.

Columns 3 to 6 of Table 1 report the average R̄2 from regressing ft and gt, respectively: (i)

on F̂PC (columns 3 and 4), which denotes a vector of the two mean-shifting factors estimated

by PCA (i.e., the first step of 2SA), and (ii) on F̂QR (columns 5 and 6), which denotes a vector

of the two estimated quantile-shifting factors using FIA at τ = 0.1, 0.25, 0.75, 0.9.13 It becomes

evident from the high values of the reported average R̄2s in columns 3 and 5 (regressions of f on

F̂PC and F̂QR, respectively) that the mean-shifting factor ft is well captured by both estimation

methods as N,T get large. By contrast, the high average R̄2s reported in column 6 (regression

of g on F̂QR) and the low average R̄2s shown in column 4 (regression of g on F̂PC) indicate that

FIA is the only estimation procedure which is able to capture the quantile-shifting factor gt as

N,T get large.

Next, we focus directly on the quantile-shifting (volatility) factor gt in the previous DGP and

check how well it is estimated when using CA and PCA-SQ, namely, the square root of the first

principal component of the squared residuals. Columns 7 and 8 in Table 1 report the average

R̄2 from regressing gt: (i) on ĝCA, which denotes the estimated quantile factor using the CA

(column 7), and (ii) on ĝV F , which denotes the estimated volatility factor using PCA-SQ. From

the reported average R̄2s it can be observed that, as the sample sizes increase, ĝV F gets slightly

closer to gt than ĝCA at τ = 0.25, 0.75; yet, the two methods perform equally well at τ = 0.1, 0.9.

13In this simulation and in the remaining ones reported in this sub-section, the average R̄2 is computed from
100 replications.
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Hence, these findings support the idea that for this particular DGP, which is best suited for for

the use of PCA-SQ, CA performs reasonably well in capturing the volatility factor. Yet, as we

will see next, CA may outperform PCA-SQ for relevant deviations of Example 4, e.g., when

either the number of scale-shifting factors exceeds one or when there may be quantile-dependent

factors.

To illustrate the advantages of using CA in the first case, we proceed to compare the perfor-

mances of ĝCA and ĝV F using Example 5 as the DGP. In particular, we generate the following

datasets: Xit = αift + (γ1ig1t + γ2ig2t)ǫit for N,T = 100, 200, 500, where ft ∼ i.i.d N (0, 1),

gjt ∼ i.i.d lognormal(0, 0.589) for j = 1, 2, γ1i, γ2i ∼ i.i.d Uniform(0, 1), and αi, ǫit ∼ i.i.d

N (0, 1). Columns 3 to 6 of Table 2 report the average R̄2 from regressing g1t and g2t, respec-

tively: (i) on ĝCA (columns 3 and 4), where we estimate two quantile-shifting factors from the

residuals, and (ii) on ĝV F (columns 5 and 6), which is defined as above. It is clear that, as N,T

grow, CA is able to capture both quantile-shifting factors, while PCA-SQ fails to consistently

estimate them.

Finally, to examine the performance of our CA in the presence of quantile-dependent factors,

we consider Example 8 as the DGP: Xit = αift+gtǫit+htǫ
3
it, where ft ∼ i.i.d N (0, 1), gt,

√
2ht ∼

i.i.d lognormal(0, 0.589), and αi, ǫit ∼ i.i.d N (0, 1). As discussed in Section 2, in this case the

mean-shifting factor is ft and the quantile-dependent factor is st(τ) = gt + Φ−1(τ)2ht. We

consider three estimation methods of st(τ): PCA, CA and PCA-SQ, yielding F̂PC (we estimate

2 mean-shifting factors), ĝCA, ĝV F estimated factors, respectively. Columns 3 to 5 of Table 3

report the average R̄2 from regressing st(τ) on: (i) F̂PC (column 3), (iv) ĝCA (column 4) and,

(iii) ĝV F (column 5), for τ = 0.1, 0.25, 0.75, 0.9 and N,T = 100, 200, 500. As can be inspected,

CA behaves far better than PCA or PCA-SQ in capturing the quantile-dependent factor st(τ)

at all τs, especially for large N and T .

7 Empirical Applications

In this section we consider empirical applications of our QFM estimation procedures using four

datasets in macroeconomics, finance, and climate change:

1. The first dataset (SW for short) corresponds to an updated version of the popular panel of

macroeconomic indicators which has been used by Stock and Watson to construct leading

indicators for the US economy. This data can be downloaded from Mark Watson’s website.

SW consists of 167 quarterly macro variables from 1959 to 2014 (N = 167, T = 221).

These macro variable are transformed into stationary series before estimating the factors

(see Stock and Watson 2016 for the details of this dataset).

2. The second dataset (Climate for short) consists of the annual changes of temperature from

338 stations from 1916 to 2016 (N = 338, T = 100) drawn from the Climate Research Unit
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(CRU) at the University of East Anglia, where information about global temperatures

across different stations in the Northern and Southern Hemisphere is provided.

3. The third dataset (MF for short) contains the monthly returns of 2378 mutual funds from

2000 to 2014 (N = 2378, T = 180), obtained from the Center of Research for Security

Prices (CRSP).

4. The last dataset (FF for short) contains the monthly excess returns of 100 portfolios from

1985 to 2012, constructed as in Fama and French (1993) and downloaded from Kenneth

French’s website (N = 100, T = 324).

Since the analysis of the estimated mean-shifting factors in these datasets is well documented

in the literature, our focus in this section is exclusively on the estimation of the quantile-shifting

factors. Both sets of factors are estimated by CA whose two stages are recalled for convenience:

(i) first, we use PCA to estimate the mean-shifting factors, FPC , and (ii) next apply the iterative

procedure to the residuals to obtain the quantile factors at τ = 0.1, 0.25, 0.75, 0.9, denoted as

FQRτ , with FQR = [FQR10, FQR25, FQR75, FQR90]. As a benchmark, we use PCA-SQ to

estimate a volatility factor, denoted as V F2, in each dataset.14 Likewise, to capture potential

factors affecting skewness and kurtosis, let V F3 and V F4 denote the cubic and quartic roots of

the first principal component of the third and fourth powers of residuals, respectively. In the case

of Example 4, where gt is the only quantile-shifting factor, it can be easily seen that both V F2

and V F4 yield consistent estimators of gt, while V F3 will converge to 0 since the idiosyncratic

error terms ǫit have zero means and are symmetrically distributed. At any rate, the idea behind

computing V F3 and V F4 is to capture those common factors shifting higher moments of the

distribution of the idiosyncratic errors were the data be generated by more general DGPs than

the ones discussed above.

Let p and k denote the number of mean factors and the number of quantile factors, re-

spectively. To choose p we apply the well-known selection procedures developed by Bai and

Ng (2002) and Ahn and Horenstein (2013), as well as the evidence drawn on this issue from

previous empirical studies using these datasets.15 For example, in many available studies using

SW dataset, the estimated number of mean factors is usually between 3 and 5, which coincides

with the range of factors found when applying AFM to financial asset returns; see Fama and

French (1993, 2017). As regards k, it is chosen to be 1 or 2. When k = 1, we estimate one

quantile factor at each τ , so that vector FQR contains four estimated quantile factors; when

14Notice that the volatility factor was labeled ĝV F in the simulation exercises provided in Section 6. However,
for consistency with V F3 and V F4, it is V F2 in this Section.

15We have simulation results (available upon request) showing that the estimators proposed by Bai and Ng
(2002) and Ahn and Horenstein (2013) are inconsistent for p in the case of QFM. The reason is that the idiosyn-
cratic errors are cross-sectionally uncorrelated but dependent in QFM, due to the common quantile factors, and
that such dependences are not asymptotically negligible. As a consequence, we find that the method of Bai and
Ng (2002) tends to overestimate the number of mean factors, while the method of Ahn and Horenstein (2013)
tends to underestimate the number of mean factors. Thus, we use the estimated number of factors from these
two methods as the upper and lower bounds for choosing p. In this fashion, we document how robust are our
empirical results to the number of estimated PCA factors considered in each of the empirical applications.
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k = 2, we estimate 2 quantile factors at each τ , and thus FQR contains 8 estimated quantile

factors in total.

The first issue we need to examine is whether there is some overlapping between the sets

the quantile-shifting factors and the mean-shifting factors (e.g., Examples 2 and 4 illustrate

extreme cases where these sets of factors are identical and where there is no coincidence at all,

respectively). To do this, we regress each element of FQRτ on FPC and compute the average R
2

from these regressions across the chosen set of τs. Note that in Example 2, where both factors

coincide (so that both FPC and FQRτ are consistent estimators of ft), a regression of FQRτ on

FPC will yield an average R
2
close to 1. Conversely, Example 4 implies an average R

2
close to

0 since the quantile-shifting factor differs from the mean-shifting factor. The low average R
2
s

reported in Table 4 overwhelmingly indicate that the two types of factors differ. This would be

in line (but perhaps not exactly identical) with a DGP close to Example 4 or some of the other

related examples listed in Section 2. By contrast, it provides strong evidence against a DGP in

line with Example 2.

Next, in Table 5, we report the R
2
s of regressing V F2, V F3, V F4 on FQR, for different

choices of p and k for each dataset. The idea is to check whether our CA estimated factors are

able to reproduce the volatility factors obtained by Renault et al. (2017) in the case of V F2,

and the higher moment factors which result from extending their estimation procedure to higher

powers of the residuals. There are three main takeaways from the results displayed in Table 5.

First, the R
2
s of regressing V F2 on FQR are close to 1 for all applications and for all

different choices of p and k (except in the FF dataset when p = 3), implying that our CA fares

well relative to PCA-SQ in capturing those quantile factors that shift the second moment of the

idiosyncratic residuals. To further check this finding, we plot FQRτ together with V F2 for all

applications when k = 1 and some representative choices of p in Figure 4. It can be observed

that, except perhaps for the Climate case, the estimated quantile factors and the estimated

volatility factor are very close. Yet, as discussed earlier, the factor loadings obtained by these

authors are always constant whereas the QFL obtained by our CA are quantile dependent, as

documented in Figure 5, where we plot the estimated QFLs at τ = 0.1, 0.25, 0.75, 0.9 when k = 1

for each dataset.16

Second, the R
2
s of regressing V F3 on FQR are small in most cases. As already mentioned,

these low values of the R
2
s could be explained by the definition of the idiosyncratic errors as

zero-mean symmetrically distributed random variables, implying that their cubes will also be

zero-meaned. Hence, to the extent that the first principal component of the cubed residuals

are close to a linear combination of the cubed idiosyncratic errors, V F3 would be close to a

vector of zeros, leading to a low correlations with FQR. However, there is an exception for the

Climate dataset for p = 1 and k = 2, where R
2
= 0.75, pointing out to some evidence of a factor

16For readability we only plot the QFLs of the first 200 variables for MF.
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structure in the skewness of the cubed idiosyncratic errors.

Finally, as discussed above, when there is only one quantile-shifting factor (e.g., like in

Example 4), FQRτ , V F2, V F4 are all consistent estimators of this factor. Hence, regressing

V F4 on FQR should lead to an R
2
close to 1 when k = 1, which is is only the case in the MF

dataset, where R
2
= 0.89 for p = 1. Thus, although for the MF dataset there is some evidence of

a factor structure in kurtosis driven by a single factor, the findings for the other three datasets

do not support this hypothesis.

Overall, the results reported above provide support for the existence of more than one

quantile-shifting factors in the examined datasets. Given the novelty of these findings, further

analysis and interpretation of these factors is high in our research agenda.

8 Conclusions

Factor models have become a leading methodology for the joint modeling of large number of

economic time series, with the big improvements in data collection and information technologies.

They have proved very successful in finance and macroeconomic applications (monitoring and

forecasting). This first generation of factor models are designed to reduced the dimensionality of

big datasets by finding those common components which, by shifting the means of the observed

variables with different intensities, are able to capture a large fraction of their co-movements.

However, one could envisage the existence of other common factors (extra factors) that do

not (or not only) shift the means but also affect other distributional characteristics (volatil-

ity, higher moments, extreme values, etc). This calls for a second generation of factor models.

In this paper we present a novel methodology to address these new issues, under the label of

Quantile Factor Models (QFM), that could be part of this second generation of factor mod-

els. These extra factors are useful for identification purposes, for instance mean factors versus

volatility/skewness/kurtosis factors, as well as for forecasting purposes in augmented-regression

setups. In effect, to the extent that the new factors represent hidden common characteristics of

big datasets that are not captured by PCA, they could therefore help improving forecasts.

Using tools in the interface of quantile regressions (QR) and approximate factor (AFM)

models, we have proposed different estimation approaches for factors and quantile-dependent

loadings in QFM. These estimation procedures range from a simple two-stage approach (PCA in

the first stage and QR in the second stage of each of the variables in the dataset on the estimated

PCA factors in the first stage) to more computationally involved (fully and combined) iterative

estimation procedures. In the latter, estimated factors and loadings at each quantile are obtained

by minimizing check functions which depend on both sets of objects.

Not surprisingly, simplicity comes at a cost: the two-step approach is able to retrieve factors

25



(and loadings) shifting the other parts of the distribution of the observed variables when these

factors happen to be identical to those that shift the means (and trivially when only mean-

shifting factors exist, as in standard AFM). Conversely, when both factors exist and are not

the same, then only the iterative procedures yield consistent estimates of factors and loadings.

Interestingly, if the extra factors constitute the main objects of interest, the use of the so-called

combined estimation procedure (apply PCA first to obtain the mean-shifting factors, and then

apply the iterative procedure to the residuals), proves to be less computationally burdensome

than the fully iterative procedure (where all factors and loadings are estimated iteratively at

each quantile) and still provides consistent estimators of those objects. Through simulations, we

have shown that the combined approach performs reasonably for sufficiently large finite samples,

and that it is able to overcome some shortcomings of recently available methods in empirical

finance which propose to detect volatility factors by applying PCA to the squared residuals. In

addition, our empirical applications to four panel datasets of financial, macro and climate data

provide evidence that these extra factors may be relevant in practice.

Any time a novel methodology is proposed, new research issues emerge for future investiga-

tion. Among the pending issues which have been left out of this paper (some are part of our

current research agenda), four stand out as important:

• First, there is the derivation of the asymptotic distributions of quantile-dependent factors

and loadings in the iterative procedure, where the interaction of a very large number of

incidental parameters, unobserved variables (the factors) and non-smooth criterion func-

tions poses big challenges for the tractability of this problem. Although we provide a novel

proof of consistency, further research is clearly needed on how to deal with these issues in

QFM. Here we have only tackled them in an admittedly informal way, using goodness-of-fit

comparisons of our estimated factors in simulations and empirical applications.

• Second, there is the issue of developing new information criteria to determine the number

of quantile-shifting factors. This is an issue that again we have dealt informally by checking

how robust are our results in the empirical applications to the choice of a different number

of factors. As pointed our earlier, we have found some simulation evidence that popular

selection criteria for the number of mean-shifting factors in AFM (see, e.g., Bai and Ng

2002 and Ahn and Horenstein 2013) do not work well for QFM; thus further investigation

on this issue is required.

• Third, there is the issue of checking the contributions of the extra factors in forecasting

and monitoring (see Stock and Watson 2002 for this type of analysis in dynamic factor

models), a topic of high interest for applied researchers, especially with the surge of Big

Data technologies. Since in this paper we have mainly focused on introducing the new

class of QFM and their basic properties, for the sake of brevity this topic has been left out

for further research.

• Finally, given the evidence that these extra factors could be relevant in practice, another
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interesting issue is how to interpret them in different economic and financial setups. Once

the econometric techniques to detect and estimate extra factors have been established,

attempts to provide new economic insights for these objects would help enrich the economic

theory behind factor structures.
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Figure 1: Histograms of [τ(1−τ)]−1/2 · Ĵ(λ̂1(τ)) ·
√
T [λ̂1(τ)−H−1

NTλ1(τ)] and the density function

of N (0, 1) for τ = 0.25.
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Figure 2: Histograms of [τ(1−τ)]−1/2 · Ĵ(λ̂1(τ)) ·
√
T [λ̂1(τ)−H−1

NTλ1(τ)] and the density function

of N (0, 1) for τ = 0.5.
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Figure 3: Histograms of [τ(1−τ)]−1/2 · Ĵ(λ̂1(τ)) ·
√
T [λ̂1(τ)−H−1

NTλ1(τ)] and the density function

of N (0, 1) for τ = 0.75.
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Figure 4: Comparison of estimated quantile factors (FQR; τ = 0.1, 0.25, 0.75 and = .9) and

volatility factors (V F2) for SW, MF, FF (k = 1, p = 5) and Climate (k = 1, p = 2) datasets.
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Figure 5: Estimated QFL (τ = 0.1, 0.25, 0.75 and = .9) for SW, MF, FF (k = 1, p = 5) and

Climate (k = 1, p = 2) datasets.
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Table 1: Comparison of estimated factors: PCA, FIA, CA and PCA-

SQ (Average R̄2s).

τ N = T f , F̂PC g, F̂PC f , F̂QR g, F̂QR g, ĝCA g, ĝV F

0.10 20 .8519 .3294 .2581 .5171 .5701 .6766

50 .9512 .2102 .6610 .8337 .8559 .8929

100 .9788 .1872 .9184 .9377 .9222 .9343

0.25 20 .8743 .3399 .7148 .5479 .4395 .6890

50 .9492 .2353 .9023 .7742 .7347 .8769

100 .9783 .1548 .9602 .8812 .8698 .9456

0.75 20 .8531 .3277 .6943 .5389 .4169 .6690

50 .9549 .2340 .9156 .7028 .7597 .8891

100 .9779 .1492 .9606 .8765 .8749 .9452

0.90 20 .8569 .2912 .3396 .5164 .5498 .6868

50 .9539 .1945 .6491 .8175 .8548 .8910

100 .9790 .1607 .9221 .9404 .9369 .9473

* DGP: Xit = αift + gtǫit, where ft ∼ i.i.d N (0, 1), gt = eht with ht ∼ i.i.d

N (0, 0.589) and αi, ǫit ∼ i.i.d N (0, 1). Columns 3 to 6: average R̄2 (from 100

replications) of regressing ft and gt on F̂PC and on F̂QR. Columns 7 and 8:

average R̄2 of regressing gt on ĝCA and on ĝV F .

Table 2: Comparison of estimated quantile factors:

CA and PCA-SQ (Average R̄2s).

τ N = T g1, ĝCA g2, ĝCA g1, ĝV F g2, ĝV F

0.10 100 .3893 .3903 .3193 .3044

200 .6114 .6135 .4725 .4684

500 .9279 .9287 .4868 .4924

0.25 100 .4103 .4215 .4197 .4750

200 .4762 .4562 .4865 .4488

500 .7593 .7584 .4971 .4796

0.75 100 .4025 .4100 .4371 .4430

200 .4937 .4642 .4884 .4653

500 .7803 .7819 .4860 .4874

0.90 100 .4707 .4587 .4621 .4236

200 .6319 .6313 .4796 .4551

500 .9278 .9283 .4813 .4896

* DGP: Xit = αift + (γ1ig1t + γ2ig2t)ǫit, where ft ∼ i.i.d

N (0, 1), gjt = ehjt with hjt ∼ i.i.d N (0, 0.589) for j =

1, 2, γ1i, γ2i ∼ i.i.d Uniform(0, 1), and αi, ǫit ∼ i.i.d N (0, 1).

Columns 3 to 6: average R̄2 (from 100 replications) of regress-

ing g1t and g2t on ĝCA and on ĝV F .
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Table 3: Comparison of estimated quantile-

dependent factors: Factor structure in cubic error

terms (Average R̄2s).

τ N = T s(τ), F̂PC s(τ), ĝCA s(τ), ĝV F

0.10 100 .1102 .5623 .2365

200 .0851 .7590 .2455

500 .0420 .9218 .2833

0.25 100 .0330 .3177 .0807

200 .0147 .6018 .0844

500 .0121 .8647 .1057

0.75 100 .0411 .3429 .0891

200 .0217 .5912 .0864

500 .0111 .8601 .1005

0.90 100 .1049 .5594 .2288

200 .0674 .7863 .2357

500 .0414 .9241 .2929

* DGP: Xit = αift + gtǫit +htǫ
3
it, where ft ∼ i.i.d N (0, 1),

gt,
√
2ht ∼ i.i.d lognormal(0, 0.589), and αi, ǫit ∼ i.i.d

N (0, 1). Columns 3 to 5: average R̄2 (from 100 replica-

tions) of regressing st(τ ) = gt + Φ−1(τ )2ht on F̂PC , on

ĝCA and on ĝV F .

Table 4: Comparison of mean and quantile factors in SW,

Climate, MF and FF datasets (Average R̄2s).

SW k = 1 k = 2 Climate k = 1 k = 2

p = 3 0.1359 0.0018 p = 1 -0.0088 -0.0888

p = 4 0.1086 0.0064 p = 2 -0.0134 -0.0162

p = 5 0.1682 0.0018 p = 3 -0.0283 -0.0274

MF k = 1 k = 2 FF k = 1 k = 2

p = 1 0.0263 0.0001 p = 3 0.0163 -0.0007

p = 3 0.0220 -0.0069 p = 4 0.0241 -0.0012

p = 5 0.0088 -0.0155 p = 5 0.0242 -0.0046

* Average R̄2 of regressing each element of FQRτ on F̂PC , for τ =

0.1, 0.25, 0.75, 0.9, where FQRτ are the estimated quantile factors,

F̂PC are the estimated mean factors, and p and k are the number of

quantile factors and mean factors respectively.
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Table 5: Regressions of volatility, skewness and kurtosis factors on

quantile factors (R̄2s)

V F2 on FQR V F3 on FQR V F4 on FQR

SW k = 1 k = 2 k = 1 k = 2 k = 1 k = 2

p = 3 0.8480 0.8271 0.1386 0.3053 0.3200 0.3673

p = 4 0.7949 0.8073 0.0160 0.0591 0.0094 0.0085

p = 5 0.7694 0.8117 0.0080 0.0525 0.0093 -0.0064

Climate k = 1 k = 2 k = 1 k = 2 k = 1 k = 2

p = 1 0.6824 0.6068 0.5001 0.7463 0.2141 0.2112

p = 2 0.6516 0.5373 0.0109 0.2616 0.2861 0.1706

p = 3 0.5738 0.5578 0.0450 0.6815 0.2716 0.2999

MF k = 1 k = 2 k = 1 k = 2 k = 1 k = 2

p = 1 0.7590 0.7969 0.1991 0.5479 0.7377 0.8899

p = 3 0.6648 0.7593 0.0013 0.1187 0.1089 0.2003

p = 5 0.7837 0.7677 0.1920 0.2226 0.1749 0.2276

FF k = 1 k = 2 k = 1 k = 2 k = 1 k = 2

p = 3 0.2912 0.3133 0.0678 0.2153 0.2415 0.2647

p = 4 0.6508 0.6445 0.0420 0.1900 0.3427 0.3314

p = 5 0.7095 0.6894 0.0161 0.1310 0.2905 0.2917

* R̄2 of regressing V F2, V F3 and V F4 on FQR, where V Fi (i = 2, 3, 4) is the

i-th root of the first principal component of the i-th power of the residuals.

FQR = [FQR0.1, FQR0.25, FQR0.75, FQR0.9], where FQRτ are the estimated

quantile factors at τ , and p and k are the number of quantile factors and mean

factors respectively.
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Appendix

In this Appendix we provide proofs of the main results in the paper (Theorems 1 to 5). To

prove these Theorems, Lemmas 1 to 8 are required, whose proofs can be found in the online

supplemental material.

A.1 Proof of Theorem 1

Lemma 1. Define CNT = min[N, T ], the following results hold under Assumption 1:

(i) T−1
∑T

t=1 ‖F̂t −H ′
NTFt‖2 = OP (C

−1
NT ).

(ii) ‖HNT −H0‖ = oP (1).

Proof of Theorem 1: Define:

Q∞(τ, λ) = E[ρτ (Xit − λ′H ′
0Ft)],

QT (τ, λ) = T−1
T∑

t=1

ρτ (Xit − λ′H ′
0Ft),

Q̂T (τ, λ) = T−1
T∑

t=1

ρτ (Xit − λ′F̂t).

First, it is easy to see that by Assumption 1 H−1
0 λi(τ) uniquely minimizes Q∞(τ, λ) uniformly over

τ ∈ T .

Second, notice that the function (τ, λ) 7→ ρτ (x − λ′H ′
0f) is continuous for each x ∈ X and f ∈ F ,

and |ρτ (Xit − λ′H ′
0Ft)| ≤ C · ‖λ̄‖ · ‖H0‖ · ‖Ft‖ for some constant C < ∞ for all (τ, λ) ∈ T × A. Since

E‖Ft‖ <∞ and A is compact by Assumption 1, it follows that:

sup
(τ,λ)∈T ×A

‖QT (τ, λ)−Q∞(τ, λ)‖ = oP (1) (A.1)

by invoking Lemma 2.4 of Newey and McFadden (1994).

Third, by definition, λ̂i(τ) is the minimizer of Q̂T (τ, λ) overA for each τ . Note that ρτ (u−v)−ρτ (u) =
vϕτ (u) +

∫ v

0
(1{u < s} − 1{u < 0})ds, so:17

|Q̂T (τ, λ) −QT,H0(τ, λ)| ≤ C · ‖λ‖ · T−1
T∑

t=1

‖F̂t −H ′
0Ft‖ ≤ C · ‖λ‖ ·

√
√
√
√T−1

T∑

t=1

‖F̂t −H ′
0Ft‖2

for some constant C > 0. By Lemma 1 we have T−1
∑T

t=1 ‖F̂t −H ′
0Ft‖2 ≤ T−1

∑T
t=1 ‖F̂t −H ′

NTFt‖2 +
‖HNT −H0‖2 ·T−1

∑T
t=1 ‖Ft‖2 = oP (1); it then follows that sup(τ,λ)∈T ×A |Q̂T (τ, λ)−QT (τ, λ)| = oP (1).

17It then follows that |ρτ (u− v)− ρτ (u)| ≤ |v| · |1{u < 0} − τ |+ |v| · 1{|u| < |v|} ≤ 3|v|.
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The latter result together with (A.1) imply: sup(τ,λ)∈T ×A |Q̂T (τ, λ) − Q∞(τ, λ)| = oP (1). Since λ̂i(τ)

is the minimizer of Q̂T (τ, λ) by definition, and H−1
0 λi(τ) is the unique minimizer of Q∞(τ, λ), it then

follows from Lemma B.1 of Chernozhukov and Hansen (2006) that supτ∈T ‖λ̂i(τ) −H−1
0 λi(τ)‖ = oP (1)

for all i. Finally:

sup
τ∈T

‖λ̂i(τ) −H−1
NTλi(τ)‖ ≤ sup

τ∈T
‖λ̂i(τ) −H−1

0 λi(τ)‖ + ‖H−1
NT −H−1

0 ‖ · sup
τ∈T

‖λi(τ)‖ = oP (1).

A.2 Proof of Theorem 2

To simplify the notations, we suppress the subscription i and writeXt, λ(τ), λ̂(τ) instead ofXit, λi(τ), λ̂i(τ).

Define ϕτ (u) = 1{u < 0} − τ and D = {D ∈ Rr×r : D > 0 and ‖D‖ <∞}. Note that H0 ∈ D, and since

HNT
p→ H0, we have that HNT ∈ D with probability approaching 1. For any D ∈ D, define:

S∞,D(τ, λ) = E[ϕτ (Xt − λ′D′Ft)D
′Ft],

ST,D(τ, λ) = T−1
T∑

t=1

ϕτ (Xt − λ′D′Ft)D
′Ft,

GT (τ, λ,D) =
√
T [ST,D(τ, λ)− S∞,D(τ, λ)],

ŜT (τ, λ) = T−1
T∑

t=1

ϕτ (Xt − λ′F̂t)F̂t,

ĤT,D(τ, λ) =
√
T [ST,D(τ, λ)− ŜT (τ, λ)].

The following lemmas hold under Assumptions 1 and 2:

Lemma 2. max1≤t≤T ‖F̂t −H ′
NTFt‖ = OP (T

1/8/
√
N) +OP (T

−5/8) = oP (T
−1/2).

Lemma 3. supτ∈T ‖
√
T ŜT (τ, λ̂(τ))‖ = oP (1).

Lemma 4. supτ∈T ‖GT (τ, λ̂(τ), HNT )−GT (τ,H
−1
0 λ(τ), H0)‖ = oP (1).

Lemma 5. supτ∈T

∥
∥ĤT,HNT

(τ, λ̂(τ))
∥
∥ = oP (1).

Proof of Theorem 2:

First, we have the following expansion for each τ ∈ T :

S∞,HNT
(τ, λ̂(τ)) = S∞,HNT

(τ,H−1
NTλ(τ)) +H ′

NTE[fX(λ∗(τ)′H ′
NTFt|Ft)FtF ′

t ]HNT · [λ̂(τ)−H−1
NTλ(τ)],

where λ∗(τ) is on the line connecting H−1
NTλ(τ) and λ̂(τ) for each τ . Then, by uniform continuity of

fX(x|f) and uniform convergence of λ̂(τ) for H−1
NTλ(τ), we have that:

S∞,HNT
(τ, λ̂(τ)) = H ′

NT [J(λ(τ)) + oP (1)]HNT · [λ̂(τ) −H−1
NTλ(τ)] (A.2)
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uniformly over T since S∞,HNT
(τ,H−1

NTλ(τ)) = 0.

Second, by definition we have:

√
TS∞,HNT

(τ, λ̂(τ)) = −GT (τ, λ̂(τ), HNT ) +
√
T ŜT (τ, λ̂(τ)) + ĤT,HNT

(τ, λ̂(τ)), (A.3)

and combining Lemmas 1, 3, 4, 5, (A.2), and (A.3) yields:

[H ′
0J(λ(τ))H0 + oP (1)] ·

√
T [λ̂(τ)−H−1

NTλ(τ)] = −GT (τ,H
−1
0 λ(τ), H0) + oP (1) (A.4)

uniformly in τ ∈ T . It then follows from (A.4) and Assumption 2(iii) that:18

sup
τ∈T

‖ −GT (τ,H
−1
0 λ(τ), H0) + oP (1)‖ ≥ (ρ∗ + oP (1)) · sup

τ∈T

√
T‖λ̂(τ) −H−1

NTλ(τ)‖. (A.5)

Since the mapping τ 7→ λ(τ) is continuous due to implicit function theorem and Assumption 1(v) (see

Angrist et al. 2006), the process VT (·) = GT (·, H−1
0 λ(·), H0) is ρ̃-stochastic equicontinuous with:

ρ̃[τ1, τ2] = ρ[(τ1, λ(τ1)
′H ′

0, H0), (τ2, λ(τ2)
′H ′

0, H0)],

where ρ is defined in the proof of Lemma 4:

ρ[(τ1, θ1, D1), (τ2, θ2, D2)] =

√

max
1≤j≤r

E

[

ϕτ1(Xt − θ′1Ft)D
(j·)
1 Ft − ϕτ2(Xt − θ′2Ft)D

(j·)
2 Ft

]2

,

where D(·j) denotes the jth column of D. Then by stochastic equicontinuity and a standard multivariate

central limit theorem, we have that

VT (τ) =
1√
T

T∑

t=1

ϕτ (Xt − λ(τ)′Ft)H
′
0Ft

converges weakly to a zero mean Gaussian process V∞(τ) defined by its covariance matrix:

Σ(τ1, τ2) = E[V∞(τ1)V∞(τ2)] = [min(τ1, τ2)− τ1τ2]H
′
0ΣFH0.

It then follows from (A.5) that supτ∈T

√
T‖λ̂(τ) − H−1

NTλ(τ)‖ is OP (1), and thus from (A.4) we can

conclude that [H ′
0J(λ(·)H0] ·

√
T [λ̂(·)−H−1

NTλ(·)] converges weakly to V∞(·) in ℓ∞(T ). The desired result

follows by noting that H ′
0ΣFH0 = Ir . �

A.3 Proof of Theorem 3

Proof of Theorem 3: Again, for simplicity, we suppress the subscript i. Recall that:

JH0(λ(τ)) = E
[
fX|F (λ(τ)

′Ft|Ft)H ′
0FtF

′
tH0

]

18For a symmetric positive definite matrix A and a non-zero vector a, ‖Aa‖ =
√
a′2a =

√

(a/‖a‖)′2(a/‖a‖) ·
‖a‖ ≥

√

ρ(A2)‖a‖ = ρ(A)‖a‖, where ρ(·) is the minimum eigenvalue.
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and

Ĵ(λ̂(τ)) =
1

2hT · T
T∑

t=1

{

1{|Xt − λ̂(τ)′F̂t| ≤ hT }F̂tF̂ ′
t

}

.

Define:

J(λ̂(τ)) =
1

2hT · T

T∑

t=1

{

1{|Xt − λ̂(τ)′H ′
NTFt| ≤ hT }H ′

0FtF
′
tH0

}

.

Using Assumptions 1(i)(v), Lemma 1(ii) and the uniform consistency of λ̂(τ) for H−1
0 λ(τ), it is easy

to show that supτ∈T ‖JH0(λ(τ))− J(λ̂(τ))‖ = oP (1)
19. Thus, the uniform consistency of Ĵ(λ̂(τ)) follows

from:

sup
τ∈T

‖Ĵ(λ̂(τ)) − J(λ̂(τ))‖ = oP (1). (A.6)

To prove (A.6), note that

2hT
(
Ĵ(λ̂(τ)) − J(λ̂(τ))

)

=
1

T

T∑

t=1

{

1{|Xt − λ̂(τ)′F̂t| ≤ hT }(F̂tF̂ ′
t −H ′

0FtF
′
tH0)

}

︸ ︷︷ ︸

I

+
1

T

T∑

t=1

[
1{|Xt − λ̂(τ)′F̂t| ≤ hT } − 1{|Xt − λ̂(τ)′H ′

NTFt| ≤ hT }
]
H ′

0FtF
′
tH0

︸ ︷︷ ︸

II

.

First, we have that:

‖I‖ ≤ 1

T

T∑

t=1

‖F̂tF̂ ′
t −H ′

0FtF
′
tH0‖ ≤ 1

T

T∑

t=1

‖F̂t −H ′
0Ft‖‖H ′

0Ft‖+
1

T

T∑

t=1

‖F̂t −H ′
0Ft‖‖F̂t‖

≤ 2‖H0‖ ·
1

T

T∑

t=1

‖F̂t −H ′
0Ft‖‖Ft‖+

1

T

T∑

t=1

‖F̂t −H ′
0Ft‖2

≤ 2‖H0‖ ·
1

T

T∑

t=1

‖F̂t −H ′
NTFt‖‖Ft‖+ 2‖H0‖ · ‖HNT −H0‖ ·

1

T

T∑

t=1

‖Ft‖2 + 2
1

T

T∑

t=1

‖F̂t −H ′
NTFt‖2

+2‖HNT −H0‖2 ·
1

T

T∑

t=1

‖Ft‖2

≤ 2‖H0‖

√
√
√
√ 1

T

T∑

t=1

‖F̂t −H ′
NTFt‖2

√
√
√
√ 1

T

T∑

t=1

‖Ft‖2 +OP (‖HNT −H0‖) +OP (C
−1
NT )

=

√
√
√
√ 1

T

T∑

t=1

‖F̂t −H ′
NTFt‖2 · OP (1) + ‖HNT −H0‖ · OP (1).

Then by Assumptions 2(ii), 3 and Lemma 1(i) we have ‖I‖/hT = oP (1) uniformly in τ .

Second, define Gij,t as the ith row and jth column of H ′
0FtF

′
tH0, and we first consider the case i = j

19The details of the proof are similar to that of equation (A.8) in Angrist et al. (2006) and is therefore omitted.
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such that Gi,t = Gii,t ≥ 0. It is easy to see that:

IIi,i =
1

T

T∑

t=1

[
1{|Xt − λ̂(τ)′F̂t| ≤ hT } − 1{|Xt − λ̂(τ)′H ′

NTFt| ≤ hT }
]
Gi,t

is bounded below and above by:

1

T

T∑

t=1

[

1
{
|Xt − λ̂(τ)′H ′

NTFt| ≤ hT − k̂T (τ)
}
− 1{|Xt − λ̂(τ)′H ′

NTFt| ≤ hT }
]

Gi,t,

and

1

T

T∑

t=1

[

1
{
|Xt − λ̂(τ)′H ′

NTFt| ≤ hT + k̂T (τ)
}
− 1{|Xt − λ̂(τ)′H ′

NTFt| ≤ hT }
]

Gi,t,

where k̂T (τ) = max1≤t≤T |λ̂(τ)′(F̂t − H ′
NTFt)|. We now show that the upper bound is oP (T

−1/2); the

proof for the lower bound is similar. Consider the following empirical process:

CT (θ, h) =
1√
T

T∑

t=1

{

1{|Xt − θ′Ft| ≤ h} ·Gi,t − E[1{|Xt − θ′Ft| ≤ h} ·Gi,t]
}

.

The upper bound can be written as:

T−1/2
[

CT (θ, h)|h=hT+k̂T (τ),θ=HNT λ̂(τ)
− CT (λ, h)|h=hT ,θ=HNT λ̂(τ)

]

︸ ︷︷ ︸

III

+ E
[
1{|Xt − θ′Ft| ≤ h} ·Gi,t

]

h=hT+k̂T (τ),θ=HNT λ̂(τ)
− E

[
1{|Xt − θ′Ft| ≤ h} ·Gi,t

]

h=hT ,θ=HNT λ̂(τ)
︸ ︷︷ ︸

IV

.

Since CT (θ, h) is stochastic equicontinous when E‖Ft‖4 < ∞ by Theorem 1 of Andrews (1994), it then

follows that ‖III‖ is oP (T
−1/2) uniformly in τ given that:

sup
τ∈T

|k̂T (τ)| ≤ sup
λ∈A

‖λ‖ · max
1≤t≤T

‖F̂t −H ′
NTFt‖ = oP (1). (A.7)

Next, note that

E
[
1{|Xt − θ′Ft| ≤ h1} ·Gi,t

]
− E

[
1{|Xt − θ′Ft| ≤ h2} ·Gi,t

]

= E

[(

fX|F (θ
′Ft + h∗)− fX|F (θ

′Ft + h∗∗)
)

(h1 − h2)Gi,t

]

,

where h∗ and h∗∗ are points on the lines connecting h1 and h2. We then have ‖IV ‖ ≤ 2f̄ ·E‖Gi,t‖·|k̂T (τ)| =
oP (T

−1/2) uniformly in τ by (A.7). The proof for the case where i 6= j is similar. Combining the above

results and Assumption 3, (A.6) follows directly and thus the first statement in Theorem 3 is proved. The

second statement follows trivially by Slutsky’s Theorem and the fact that 1
T

∑T
t=1 ‖F̂tF̂ ′

t −H ′
0FtF

′
tH0‖ =

oP (1). �
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A.4 Proof of Theorem 4

We begin by introducing some notation and two useful lemmas. Let ψ be a nondecreasing, convex function

with ψ(0) = 0 and Z a random variable. The Orlicz norm ‖X‖ψ is defined as:

‖X‖ψ = inf
{
C > 0 : Eψ

(
|X |/C

)
≤ 1
}
.

Note that when ψ(x) = xp for p ≥ 1, the Orlicz norm is simply the Lp-norm: ‖X‖p = (E|X |p)1/p. Define

ψp(x) = ex
p − 1, then we have the following inequality:

‖X‖1 ≤ ‖X‖ψ1.

Lemma 6 (Lemma 2.2.10 of Van der Vaart and Wellner 1996). Let Z1, . . . , Zm be arbitrary random

variables that satisfy the tail bound:

P [|Z|i > z] ≤ 2e−
1
2

z2

b+az

for all z and fixed a, b > 0. Then:

∥
∥
∥ max

1≤i≤m
Zi

∥
∥
∥
ψ1

≤ K
(

a log(1 +m) +
√
b
√

log(1 +m)
)

.

Lemma 7 (Lemma 2.2.11 of Van der Vaart and Wellner 1996). Let Y1, . . . , Yn be independent

random variables with zero mean such that E|Yi|m ≤ m!Mm−2vi/2, for every m ≥ 2 and some constants

M and vi. Then:

P [|Y1 + · · ·+ Yn| > x] ≤ 2e−
1
2

x2

v+Mx ,

for v ≥ v1 + · · ·+ vn.

Lemma 8. Let X be a random variable with mean µ, distribution function FX , and continuous density

function fX . Then for any x ∈ R we have that:

sup
c∈R

|ρτ (x − c)− Eρτ (X − c)| ≤ |x− µ|+ E|X − µ|.

Proof of Theorem 4:

Step 1: The first step is to show that:

sup
Ft∈F ,λi∈A

∣
∣
∣
∣
∣
(NT )−1

N,T
∑

i=1,t=1

[
ρτ (Xit − λ′iFt)− Eρτ (Xit − λ′iFt)

]

∣
∣
∣
∣
∣
= oP (1). (A.8)

Define D = {λ′F : λ ∈ A, F ∈ F}, then it is obvious that D is a compact subset of R. Let B̃h(x) be

a closed ball with center x and radius h > 0. Then for any γ > 0, A and F are covered by
⋃

λ∈A B̃γ(λ)

and
⋃

F∈F B̃γ(F ) respectively. It then follows from Assumption 4(i) that there exists finite constants K1
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and K2, and a1, . . . aK1 ∈ A, f1, . . . fK2 ∈ F such that:

A ⊂
⋃

1≤k≤K1

B̃γ(ak) and F ⊂
⋃

1≤k≤K2

B̃γ(fk).

These covering balls for A can be easily transformed into disjoint neighbourhoods Bγ(a1), . . . , Bγ(aK1)

whose union covers A, and for each a ∈ Bγ(ak) we have |a − ak| ≤ γ. The same procedure can be used

for the covering balls of F .

Thus, if d ∈ D, then there exists λ, F and some k1 ≤ K1, k2 ≤ K2, such that d = λ′F , λ ∈ Bγ(ak1)

and F ∈ Bγ(fk2). In other words, the set D is covered by:

K1⋃

k=1

K2⋃

s=1

H(ak, fs), where H(ak, fs) = {λ′F : λ ∈ Bγ(ak), F ∈ Bγ(fs)}.

Now suppose d ∈ H(ak, fs), then by the above definition there exists λ ∈ Bγ(ak), F ∈ Bγ(fs) such that

d = λ′F . Define M > 0 as an upper bound for the norms of vectors in F and A, and δ = γ2 +2γM . We

have that:

|d− a′kfs| = |λ′F − a′kfs| ≤ |λ− ak| · |F − fs|+ |ak| · |F − fs|+ |λ− ak| · |fs| ≤ γ2 + 2γM = δ,

implying that H(ak, fs) ⊆ B̃δ(a
′
kfs), and thus

D ⊂
K1⋃

k=1

K2⋃

s=1

B̃δ(a
′
kfs).

Suppose there are K elements in the set {d : d = a′kfs, 1 ≤ k ≤ K1, 1 ≤ s ≤ K2}, then it is obvious that

K ≤ K1K2. Call these elements d1, d2, . . . , dK , and define DK = {d1, . . . , dK}. Then D is covered by the

union of B̃δ(d1), . . . , B̃δ(dK).

The above analysis implies that for any δ > 0, there exists a finite constant K which depends on δ,20

and a sequence d1, . . . , dK ∈ D such that D is covered by the union of K closed balls B̃δ(d1), . . . , B̃δ(dK).

Returning to Equation (A.8). For given Λ and F , define cit = λ′iFt and:

dit = a′kfs ∈ DK if λi ∈ Bγ(ak), Ft ∈ Bγ(fs). (A.9)

Note that even though dit is indexed by both i and t, it can only take K different values, and it is obvious

20This K depends on K1,K2 and therefore depends on γ, and finally depends on δ through the equality:
δ = γ2 + 2γM
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that |cit − dit| ≤ δ. First, note that:

∣
∣
∣
∣
∣
(NT )−1

N,T
∑

i=1,t=1

[
ρτ (Xit − λ′iFt)− Eρτ (Xit − λ′iFt)

]

∣
∣
∣
∣
∣

≤
∣
∣
∣
∣
∣
(NT )−1

N,T
∑

i=1,t=1

[
ρτ (Xit − cit)− ρτ (Xit − dit)

]

∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣
(NT )−1

N,T
∑

i=1,t=1

[
Eρτ (Xit − cit)− Eρτ (Xit − dit)

]

∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣
(NT )−1

N,T
∑

i=1,t=1

[
ρτ (Xit − dit)− Eρτ (Xit − dit)

]

∣
∣
∣
∣
∣

= I + II + III.

Next, define:

s(x, δ) = sup
c1,c2∈D,|c1−c2|≤δ

∣
∣ρτ (x− c1)− ρτ (x− c2)

∣
∣.

Since the mapping c 7→ ρτ (x, c) is continuous for any x, it is uniform continuous over the compact set

D, implying that s(Xit, δ) converges to 0 almost surely as δ → 0. Moreover, it is easy to see that, based

on Assumption 4, there exists a function G(x) > 0 such that |ρτ (x − c)| ≤ G(x) for all c ∈ D, and

EG(Xit) <∞ for all i, t. It follows from dominated convergence that µit(δ) = E[s(Xit, δ)] → 0 as δ → 0

for all i, t. Therefore, we have that:

I ≤ (NT )−1

N,T
∑

i=1,t=1

∣
∣ρτ (Xit − cit)− ρτ (Xit − dit)

∣
∣

≤ (NT )−1

N,T
∑

i=1,t=1

[s(Xit, δ)− µit(δ)] + (NT )−1

N,T
∑

i=1,t=1

µit(δ) = I(i) + I(ii).

It can be shown in a similar way that term II is bounded by I(ii). Note that I(i) and I(ii) do not depend

on λi, Ft, and that I(i) is oP (1) by a law of large numbers, I(ii) is positive and can be made arbitrarily

small by choosing a small enough δ. So the term I + II is uniformly oP (1), and it remains to show that

III is uniformly oP (1).

For a given δ > 0 and the corresponding K, define the following set:

Θ =
{

θ = [d11, . . . , d1T , . . . , dit, . . . , dN1, . . . , dNT ] : Ft ∈ F , λi ∈ A, 1 ≤ t ≤ T, 1 ≤ i ≤ N
}

,

where dit is defined as in (A.9). This set contains all the possible values that θ can take when each λi

and Ft are free to take values in A and F . Recallr that, for any given δ, we can find a positive γ through

the equation δ = γ2+2γM , and therefore find finite constants K1 and K2 such that A and F are covered

by K1 and K2 disjoint neighbourhoods respectively. Note that dit = a′kfs for all λi ∈ Bγ(ak) and all

Ft ∈ Bγ(fs), so we have S ≤ KN
1 K

T
2 where S is the number of elements of the set Θ.21 Denote these

21Without the restrictions in (A.9), each dit can take K different values, and the number of elements of Θ will
be KNT .
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elements as θ1, . . . , θS , where:

θj = [dj,11, . . . , dj,1T , . . . , dj,it, . . . , dj,N1, . . . , dj,NT ],

and define:

SNT (θj) =

∣
∣
∣
∣
∣

N,T
∑

i=1,t=1

[
ρτ (Xit − dj,it)− Eρτ (Xit − dj,it)

]

∣
∣
∣
∣
∣
.

Then we have:

sup
Ft∈F ,λi∈A

∣
∣
∣
∣
∣
(NT )−1

N,T
∑

i=1,t=1

[
ρτ (Xit − dit)− Eρτ (Xit − dit)

]

∣
∣
∣
∣
∣
= (NT )−1 max

1≤j≤S
SNT (θj).

Note that:

sup
c∈D

∣
∣ρτ (Xit − c)− Eρτ (Xit − c)

∣
∣

≤ sup
c∈R

∣
∣ρτ (Xit − c)− Eρτ (Xit − c)

∣
∣

= sup
c∈R

∣
∣ρτ (vit + λ0

′

i F
0
t − c)− Eρτ (vit + λ0

′

i F
0
t − c)

∣
∣

= sup
c∈R

∣
∣ρτ (vit − c)− Eρτ (vit − c)

∣
∣

≤ |vit − Evit|+ E|vit − Evit|,

where the last inequality follows from Lemma 8. Thus, for all i, t, it holds that:

E|ρτ (Xit − dj,it)− Eρτ (Xit − dj,it)|m

≤ E

[

|vit − Evit|+ E|vit − Evit|
]m

≤ 2m−1
[

E|vit − Evit|m + (E|vit − Evit|)m
]

.

It then follows from Assumption 4(iv) that there exists finite constants M1 and M2 such that:

E|ρτ (Xit − dj,it)− Eρτ (Xit − dj,it)|m ≤ m!Mm−2
1 M2/2

for all i, t. It then follows from Lemma 7 that

P [SNT (θj) > x] ≤ 2e
− 1

2
x2

(N+T )M2+M1x

for all j. Finally, applying Lemma 6 we have that for some K∗ that only depends on the function ψ1,

∥
∥
∥ max

1≤j≤S
SNT (θj)

∥
∥
∥
ψ1

≤ K∗
(

M1 log(1 + S) +
√

(N + T )M2

√

log(1 + S)
)

≤ M3

(

N logK1 + T logK2 +
√
N + T

√

N logK1 + T logK2

)
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for some finite constant M3. As a result of the above inequality, we have that:

sup
Ft∈F ,λi∈A

∣
∣
∣
∣
∣
(NT )−1

N,T
∑

i=1,t=1

[
ρτ (Xit − dit)− Eρτ (Xit − dit)

]

∣
∣
∣
∣
∣

= (NT )−1 max
1≤j≤S

SNT (θj) = OP (N
−1 + T−1) = oP (1).

Thus, we have proved that Equation (A.8) holds by showing that I, II and III are all uniformly oP (1).

Step 2:

For any given Λ and F , we have that:

1

NT

N,T
∑

i=1,t=1

ρτ (Xit − λ′iFt)−
1

NT

N,T
∑

i=1,t=1

ρτ (Xit − λ0
′

i F
0
t )

=
1

NT

N,T
∑

i=1,t=1

[
ρτ (Xit − λ′iFt)− Eρτ (Xit − λ′iFt)

]
+

1

NT

N,T
∑

i=1,t=1

[
ρτ (Xit − λ0

′

i F
0
t )− Eρτ (Xit − λ0

′

i F
0
t )
]

+
1

NT

N,T
∑

i=1,t=1

[
Eρτ (Xit − λ′iFt)− Eρτ (Xit − λ0

′

i F
0
t )
]

= IV + V + V I.

The result of the first step implies that:

sup
Ft∈F ,λi∈A

|IV + V | ≤ 2 sup
Ft∈F ,λi∈A

∣
∣
∣
∣
∣
(NT )−1

N,T
∑

i=1,t=1

[
ρτ (Xit − λ′iFt)− Eρτ (Xit − λ′iFt)

]

∣
∣
∣
∣
∣
= oP (1).

Let hit = λ′iFt − λ0
′

i F
0
t . By Taylor expansion we get:

Eρτ (Xit − λ′iFt)− Eρτ (Xit − λ0
′

i F
0
t ) = Eρτ (vit − hit)− Eρτ (vit) = fit(ṽit)h

2
it ≥ f · h2it,

for some f > 0 according to Assumption 4(iii), where ṽit is between 0 and hit.

Next, by the above results and the definition of Λ̂ and F̂ , we have

0 ≥ 1

NT

N,T
∑

i=1,t=1

ρτ (Xit − λ̂′iF̂t)−
1

NT

N,T
∑

i=1,t=1

ρτ (Xit − λ0
′

i F
0
t ) ≥ oP (1) + f

1

NT

N,T
∑

i=1,t=1

ĥ2it,

where the oP (1) is uniform over A and F , and ĥit = λ̂′iF̂t − λ0
′

i F
0
t . Since f > 0 the above inequality

implies that

1

NT

N,T
∑

i=1,t=1

(λ̂′iF̂t − λ0
′

i F
0
t )

2 =
1

NT
‖F̂ Λ̂′ − F 0Λ0′‖2 = oP (1).
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Finally, define MF̂ = I − F̂ (F̂ ′F̂ )−1F̂ ′, and let ‖ · ‖s denote the spectral norm of a matrix. Then, it

holds that:

‖MF̂ (F̂ Λ̂
′ − F 0Λ0′)‖ ≤

√

rank
(
MF̂ (F̂ Λ̂

′ − F 0Λ0′)
)
· ‖MF̂‖S · ‖F̂ Λ̂′ − F 0Λ0′‖S.

Since rank(MF̂ ) = T − r, rank(F̂ Λ̂′ − F 0Λ0′) ≤ 2r, ‖MF̂ ‖S = 1 and ‖F̂ Λ̂′ − F 0Λ0′‖S ≤ ‖F̂ Λ̂′ − F 0Λ0′‖,
it follows that:

(NT )−1/2‖MF̂F
0Λ0′‖ =

√

Tr
[F 0′MF̂F

0

T
· Λ

0′Λ0

N

]

= oP (1).

Since N−1Λ0′Λ0 converges to a full rank matrix by Assumption 4(ii), it then follows that:

∥
∥
∥
F 0′MF̂F

0

T

∥
∥
∥ = oP (1),

which implies:

F 0′F 0/T − (F 0′ F̂ /T )(F̂ ′0/T ) = oP (1).

Consequently:

‖PF̂ − PF 0‖2 = Tr[PF̂ ] + Tr[PF 0 ]− 2Tr[PF̂ · PF 0 ] = Tr
[

(F 0′F 0/T )−1
(
F 0′F 0/T − (F 0′ F̂ /T )(F̂ ′0/T )

)]

,

which is equal to oP (1) since F
0′F 0/T converges to a positive definite matrix by Assumption 4(ii). We

can show that ‖PΛ̂ − PΛ0‖ = oP (1) in a similar way. Then the proof of Theorem 4 is complete. �

A.5 Proof of Theorem 5

Proof of Theorem 5: Assumption 5 (i) and (ii) ensures that Assumptions A to D of Bai and Ng (2002)

are satisfied. It then follows directly from Theorem 1 of Bai and Ng (2002) that:

T−1
T∑

t=1

‖F̂t −H ′
NTFt‖2 = oP (1)

and

N−1
N∑

i=1

‖λ̂i −H−1
NTλi‖2 = oP (1).

To prove the consistency of the estimated quantile-shifting factors, we need to show that:

sup
Gt∈G,γi∈A

∣
∣
∣
∣
∣
(NT )−1

N,T
∑

i=1,t=1

[
ρτ (êit − γ′iGt)− Eρτ (eit − γ′iGt)

]

∣
∣
∣
∣
∣
= oP (1),
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and then the rest of the proof follows exactly as the second step of the proof of Theorem 4. Noticing

that:

(NT )−1

N,T
∑

i=1,t=1

[
ρτ (êit − γ′iGt)− Eρτ (eit − γ′iGt)

]

= (NT )−1

N,T
∑

i=1,t=1

[
ρτ (êit− γ′iGt)− ρτ (eit− γ′iGt)

]
+(NT )−1

N,T
∑

i=1,t=1

[
ρτ (eit− γ′iGt)−Eρτ (eit− γ′iGt)

]
,

it then follows from the proof of Theorem 4 that:

sup
Gt∈G,γi∈A

∣
∣
∣
∣
∣
(NT )−1

N,T
∑

i=1,t=1

[
ρτ (eit − γ′iGt)− Eρτ (eit − γ′iGt)

]

∣
∣
∣
∣
∣
= oP (1).

Therefore it remains to show that:

sup
Gt∈G,γi∈A

∣
∣
∣
∣
∣
(NT )−1

N,T
∑

i=1,t=1

[
ρτ (êit − γ′iGt)− ρτ (eit − γ′iGt)

]

∣
∣
∣
∣
∣
= oP (1). (A.10)

It is easy to see that the left-hand side of the above equation is bounded (up to a constant) by:

1

NT

N,T
∑

i=1,t=1

∣
∣êit − eit

∣
∣ =

1

NT

N,T
∑

i=1,t=1

∣
∣λ̂′iF̂t − λ′iFt

∣
∣

≤ 1

N

N∑

i=1

‖λ̂i − λi‖
1

T

T∑

t=1

‖F̂t‖+
1

N

N∑

i=1

‖λi‖
1

T

T∑

t=1

‖F̂t − Ft‖.

Finally, it follows from the consistency of PC estimators that:

1

N

N∑

i=1

‖λ̂i − λi‖ ≤

√
√
√
√ 1

N

N∑

i=1

‖λ̂i − λi‖2 = oP (1) and
1

T

T∑

t=1

‖F̂t − Ft‖ ≤

√
√
√
√ 1

T

T∑

t=1

‖F̂t − Ft‖2 = oP (1),

T−1
∑T

t=1 ‖F̂t‖ ≤
√

T−1
∑T

t=1 ‖F̂t‖2 =
√
r, and N−1

∑N
i=1 ‖λi‖ is O(1) by assumption, so (A.10) holds

and the proof is complete. �
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