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Abstract

This paper explores how the interaction between household heterogeneity and progressive

government transfers shapes aggregate labor market fluctuations. Using a static model of the

extensive margin labor supply, we analytically show that greater progressivity in the transfer

system leads to greater volatility of low wage workers’employment and less procyclical average

labor productivity. We then build a dynamic general equilibrium model with both idiosyncratic

and aggregate productivity shocks and show that household heterogeneity substantially shapes

the dynamics of macroeconomic aggregates when interacted with progressive transfers. Specif-

ically, a notable feature of the performance of our heterogeneous-agent model is its ability to

reproduce moderately procyclical average labor productivity while retaining the success of the

representative-agent indivisible labor model in generating a large cyclical volatility of aggregate

hours relative to output. Finally, we document that among low-wage workers, (i) the individual-

level probability of adjusting labor supply along the extensive margin is significantly higher, and

(ii) the fall in employment rate is considerably steeper during the last six recessions, both of

which support the key mechanism of our model.
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1 Introduction

There has been great interest in incorporating rich micro-level heterogeneity into macroeconomic

models in recent decades (see e.g., Krusell and Smith, 2006; and Heathcote, Storesletten, and

Violante, 2009 for literature reviews). Clearly, it is essential to incorporate household or firm het-

erogeneity when studying distributional issues within a macroeconomic framework. However, it is

less clear whether heterogeneity at the micro level matters for aggregate business cycle dynamics

at the macro level. Although extensive studies show the importance of heterogeneity in macro-

economic aggregates and equilibrium prices in the absence of aggregate risk (e.g., Huggett, 1993;

and Heathcote, 2005 among others), the recent quantitative macroeconomic literature with aggre-

gate uncertainty has suggested that incorporating micro-level heterogeneity may have only limited

impacts on the business cycle fluctuations of macroeconomic aggregates (e.g., Krusell and Smith,

1998; Thomas, 2002; Khan and Thomas, 2008; and Chang and Kim, 2007; 2014).

In this paper, we study how household heterogeneity shapes aggregate labor market fluctuations

in the presence of progressive government transfers both theoretically and quantitatively. We first

present a simple tractable model of the extensive margin labor supply. We analytically show that the

interaction between household heterogeneity and the progressive transfer system can increase the

degree to which aggregate hours vary over the business cycle and make average labor productivity

less procyclical through more elastic labor supply among low-wage households. We then construct

a dynamic general equilibrium incomplete-markets model with idiosyncratic and aggregate shocks,

augmented with progressive government transfers. We find that our quantitative business cycle

model delivers moderately procyclical average labor productivity and a large cyclical volatility of

aggregate hours relative to output, both of which are known to be diffi cult to explain by standard

real business cycle models. In particular, our result is distinct from the existing literature because

our heterogeneous-agent model dampens a strong link between average labor productivity and

output without relying on an additional source of exogenous shocks.1 At the same time, our

heterogeneous-agent model retains the success of the canonical representative-agent indivisible labor

1The existing quantitative theoretical explanations for lowering a highly procyclical labor productivity in the model
rely on the introduction of additional shocks. More specifically, Benhabib et al. (1991) consider home-production
technology shocks; Christiano and Eichenbaum (1992) suggest government spending shocks; Braun (1994) introduces
income tax shocks; and Takahashi (2018) incorporates idiosyncratic wage uncertainty shocks into a real business cycle
model.
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model in generating a large volatility of aggregate hours without the assumptions of lotteries and

perfect consumption insurance (Rogerson, 1988). We show that the key to our quantitative results is

heterogeneity in labor supply responses at the micro level in the presence of progressive government

transfers, in line with both our analytical results from the simple model and the microeconomic

evidence we document using the PSID.

Our baseline model economy is based on a standard incomplete markets model with hetero-

geneous households that make consumption-savings and extensive-margin labor supply decisions

in the presence of both idiosyncratic productivity risk and aggregate risk (Chang and Kim, 2007;

2014).2 Our model also incorporates progressive government transfers, captured by a parsimonious

yet flexible nonlinear function. We calibrate our model economy to match salient features in the

micro-level data, including the degree of progressivity in the welfare programs obtained from the

Survey of Income and Program Participation (SIPP) data and the persistence of idiosyncratic wage

risk obtained from the Panel Study of Income Dynamics (PSID) data.

We find that our baseline model features aggregate labor market dynamics that differ consid-

erably from its nested versions, abstracting from either government transfers (a model similar to

Chang and Kim, 2007; 2014) or household heterogeneity (a model similar to Hansen, 1985). Specif-

ically, we find significant improvements in the business cycle statistics regarding aggregate labor

market fluctuations. First, our baseline model with the nonlinear government transfer schedule

generates considerably lower correlations of average labor productivity with output (0.58 vs. 0.30

in the data) than its nested versions (0.95 in the absence of government transfers and 0.77 or 0.81

in the absence of household heterogeneity). At the same time, in our baseline model, the cyclical

volatility of aggregate hours relative to output is 0.83, which is much closer to 0.98 in the data

compared to 0.55 in the heterogeneous-agent model without government transfers.3 It is striking

that this performance is comparable to 0.85, the value obtained from its representative-agent coun-

terpart, which is often considered to be the upper bound due to the representative agent’s utility

function having the lowest curvature in labor supply.

2This class of models in turn builds on a standard incomplete markets model without aggregate risk, pioneered
by Imrohoroğlu (1988), Huggett (1993) and Aiyagari (1994).

3This finding is noteworthy, given that the presence of household heterogeneity seems to make it more challenging
to generate a large volatility of aggregate hours, according to the recent findings in the business cycle literature. For
example, Chang and Kim (2014) report that the volatility of aggregate hours relative to output is 0.58 in their model
with indivisible labor.
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To illustrate the key mechanism underlying our quantitative success, we conduct impulse re-

sponse exercises. We find that in our baseline model, aggregate hours fall considerably more and

average labor productivity does not fall deeply shortly after a persistent negative shock in total

factor productivity (TFP). We also compute the impulse responses of aggregate hours at the dis-

aggregated level. We find that labor supply is generally less elastic among households with high

productivity, consistent with the analytical finding in our simple static model of the extensive mar-

gin labor supply. This pattern of heterogeneity in the labor supply (i.e., disproportionately more

elastic labor supply among low-wage workers) and the resulting compositional changes following the

aggregate TFP shock underlie the quantitative success of our baseline heterogeneous-agent model

with government transfers. In the heterogeneous-agent model without government transfers, how-

ever, we find that the labor supply of low-wage households is remarkably inelastic due to the strong

precautionary labor supply motive (Yum, 2018). This finding shows that the presence of household

heterogeneity per se is not suffi cient in an incomplete markets framework, thereby explaining why

the existing heterogeneous-agent model (e.g., Chang and Kim, 2007; 2014) is unable to deliver our

main quantitative results.

Finally, we use micro data from the PSID to empirically explore heterogeneity in labor supply

responses.4 We document two key empirical findings using two different approaches: the first

approach uses individual-level flow data, and the second uses short-run employment rate changes

shaped by aggregate factors.5 First, we find that the individual-level probability of adjusting

labor supply along the extensive margin is significantly higher among low-wage workers, and this

probability tends to decrease with wages. Second, we document that during the last six recessions,

the employment rate has fallen most sharply in the first wage quintile, compared to the other wage

quintiles. Although the above two approaches capture labor supply adjustments over different time

horizons, shaped by different forcing variables (idiosyncratic vs. aggregate factors), we find that

these two findings are remarkably similar, demonstrating the robustness of our empirical result that

lower-wage workers adjust the labor supply along the extensive margin more elastically. Both of

these empirical findings are consistent with the pattern of heterogeneity in labor supply responses

4There is limited empirical evidence on heterogeneity in labor supply responses at the extensive margin. See
Kydland (1984) and Juhn, Murphy and Topel (1991) for earlier evidence.

5We use the panel structure of the PSID, which allows us to keep track of the same individuals over time.

3



in our heterogeneous-agent model, thereby supporting our key model mechanism.

Our main result suggests that household heterogeneity at the micro level is important for the

dynamics of macroeconomic variables. This result is broadly in line with recent papers such as

Krueger, Mitman and Perri (2016) and Ahn, Kaplan, Moll, Winberry and Wolf (2017), both of

which find that heterogeneity at the micro level is crucial in shaping the impact of aggregate

shocks on macroeconomic variables.6 Although the distribution of wealth plays an important role

in these studies and in our study, it is important to note that Krueger et al. (2016) and Ahn et al.

(2017) focus on the consumption-savings channel, whereas our paper focuses on the labor supply

channel as a key mechanism through which micro-level heterogeneity matters for the business cycle

fluctuations of macroeconomic aggregates, such as aggregate hours and labor productivity.

Our paper builds upon the literature that highlights the role of government transfers in af-

fecting the precautionary behavior of low-income households. An earlier paper by Hubbard et

al. (1995), for example, shows that social insurance discourages precautionary savings among

low-income households. Using an incomplete-markets model without aggregate uncertainty, Yum

(2018) shows that government transfers reduce the precautionary motives of employment among

wealth-poor households that lack savings for self-insurance. Our results herein suggest that the

presence of progressive government transfers in this class of incomplete-markets environments not

only matters for the long-run employment effects of labor taxes, as studied in Yum (2018), but

also has important implications for aggregate hours volatility over the business cycle. Our paper

further contributes to this literature by providing the analytical results on the interaction between

household heterogeneity and the progressivity of government transfers, as well as the quantitative

results on how the dynamics of average labor productivity over the business cycle can be affected

by this mechanism.

Our quantitative business cycle model is based on Chang and Kim (2007; 2014), but it differs

from theirs in at least two important respects. First, as highlighted above, we bring the institu-

tional feature of progressive government transfers, as observed in the micro-level data (SIPP), into

the model.7 Second, note that the estimation of the idiosyncratic productivity (wage) process for

6See also Kim (2018).
7Chang, Kim, and Schorfheide (2013) consider a version of the model in Chang and Kim (2007) with flat lump-sum

transfers. However, given the different focus of their paper, they report a limited number of standard business cycle
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the model with the extensive margin labor supply is not trivial because wages are observable in

the data only for those who choose to work. Chang and Kim (2007; 2014) address this selection

problem outside the model by applying the Heckman (1979) correction. In contrast, we address the

selection problem and potential temporal aggregation bias (quarterly model vs. annual micro-level

data) using the model simulation directly. Specifically, we use the simulated data where selection

is endogenously addressed within the model and then perform temporal aggregation using the sim-

ulated quarterly data to obtain the simulated annual data. Moreover, our calibration targets the

persistence of idiosyncratic wage risk estimated following Heathcote, Storesletten, and Violante

(2010). As a result, our calibration strategy leads to a considerably high persistence of idiosyn-

cratic productivity shocks, which interacts with the presence of progressive government transfers

in improving the performance of the incomplete-markets business cycle model.8

The paper is organized as follows. Section 2 presents analytic results on the key mechanism of

this paper. Section 3 describes the model environment of the equilibrium business cycle models,

defines equilibrium, and discusses the numerical solution methods. In Section 4, we describe how

the parameters are calibrated and show the properties of the quantitative models in stationary

equilibrium. Section 5 presents the main quantitative results from the calibrated models. Section 6

presents empirical evidence on heterogeneity in labor supply using the panel structure of the PSID.

Section 7 concludes the paper.

2 Interplay between household heterogeneity and progressive trans-

fers

In this section, we present a simple model of the extensive margin labor supply to illustrate the key

mechanism through which the interplay between household heterogeneity and progressive transfers

influences aggregate labor market fluctuations. For analytical tractability and a clear illustration,

statistics, which are the main focus of our paper.
8Specifically, the persistence estimate of the idiosyncratic productivity shocks at the annual frequency ranges from

0.91 to 0.93 in our paper, whereas it is approximately 0.75 in Chang and Kim (2007). Our calibrated value is quite
similar to the value used in Chang, Kim, Kwon and Rogerson (2019). In Section 2, we discuss how this persistence
matters for our results.
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we consider a static economic environment by taking the distribution of wealth as given.9

There is a continuum of agents in the unit interval. We assume that there are two types of

productivity. That is, individual productivity xi can be either low or high: xi ∈ {xl, xh}. The mass

of each type is denoted by πl and πh satisfying πl + πh = 1. A subscript i ∈ {l, h} denotes the

type of the agent throughout this section. Agents are allowed to differ also in their level of asset

holdings, a. Because our focus is on the extensive margin, the agent can choose to either work full

time or not at all: ni ∈ {0, 1}.10

The decision problem of each type is given by

max
ci≥0,ni∈{0,1}

{log ci − bni}

subject to

ci ≤ zxini + a+ Ti, i = l, h

where c denotes consumption, n is the employment choice, a is the level of assets, and b > 0

captures the disutility of work. We use z to denote aggregate productivity. Finally, we introduce

a productivity-dependent public insurance scheme Ti ≥ 0. We assume that Tl is greater than Th,

implying that it is progressive.11

The above maximization problem describes the optimal decisions of an individual. Specifically,

comparing the utility conditional on working to not working, the agent chooses to work if

log (zxi + Ti + a)− b ≥ log (Ti + a) .

Note that this can be equivalently written as

b ≤ log

(
zxi + Ti + a

Ti + a

)
= log

(
1 +

zxi
Ti + a

)
,

9The quantitative model in the following sections relaxes this assumption and the distribution of wealth is en-
dogenously determined by the household consumption-savings decision.
10Our analytical framework in this section builds on the theoretical framework in Doepke and Tertilt (2016). Since

the focus of the analysis is different, their model is based on two gender types and continuous preference heterogeneity
whereas our model is based on two productivity types and continuous asset heterogeneity. Moreover, our results cover
not only the labor supply elasticity but also average labor productivity.
11 In this section, we assume that transfers depend on productivity for analytical tractability. In the following

sections, our quantitative exercises relax this assumption and use income-dependent transfers instead.
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Figure 1: Probability density function of assets in the static model
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or

a ≤ zxi − Ti

where we assume that the constant b is equal to log(2) > 0 without loss of generality. This decision

rule shows that the agent is more likely to choose to work if the aggregate condition z or individual

productivity x is higher. Also, note that the agent is less likely to choose to work if the size of

transfers is higher.

In our model of the extensive margin labor supply, aggregate employment is shaped by both the

decision rule and the distribution. Let Fi(a) be the conditional (differentiable) distribution function

of assets with its marginal density being fi(a) = F ′i (a). Specifically, we use the exponential function

for our following results: for a ≥ 0,

Fi(a) = 1− exp(−a),

fi(a) = F ′i (a) = exp(−a).

This density function has the mode at 0 and is strictly decreasing in a, as shown in Figure 1. In

addition, it generates a long right tail of asset distribution, as in the data.12

Given the density function and the work decision rule, the fraction of agents working (i.e., the

12We note that our results are more general in that it is possible to derive the same theoretical results with
alternative tractable probability distributions featuring these properties.
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employment rate) for each type is given by

Ni = F (ãi) = 1− exp(−ãi)

where

ãi = zxi − Ti.

In other words, the employment rate of the type i, Ni, is the integral of the type i agents whose

asset level is lower than the threshold level ãi. We now present some theoretical results based on

this model. All proofs are provided in Appendix A.

Proposition 1 Let εi be the labor supply elasticity of the type i.

εi ≡
∂Ni

∂z

z

Ni
.

Assume Ti = 0. The labor supply elasticity of the low type is greater than that of the high type.

That is, εl > εh.

This shows that our model of the extensive margin delivers heterogeneity in the labor supply

elasticity. Note that the threshold asset level of employment for the low-type agents is lower than

that for the high-type agents: ãl < ãh. Since there are more marginal households around ãl, as

shown in Figure 1, the same change in z, which shifts the employment thresholds to the same

degree, has a larger impact on the employment rate of the low type.

We now consider the role of government transfers and how they interact with heterogeneity. To

simplify the algebra, we impose symmetry. Specifically, we assume that πl = πh = 0.5. In addition,

xh = 1 + λ and xl = 1− λ where λ ∈ [0, 1] measures the cross-sectional dispersion of productivity.

To study the effect of progressivity in the transfer schedule, Ti is assumed to be determined by

Tl = T (1 + ωλ)

Th = T (1− ωλ)

where T ∈ [0, z] is the scale of transfers, and ω ∈ [0, 1λ ] captures progressivity. A changes in
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progressivity ω does not affect the aggregate amount of transfers.13

Given the above assumptions, we can derive the type-specific employment rate:

Nl = 1− exp(−ãl)

Nh = 1− exp(−ãh)

where ãl = max {0, z(1− λ)− T − Tωλ} and ãh = max {0, z(1 + λ)− T + Tωλ} .

Proposition 2 Greater progressivity of transfers increases the labor supply elasticity of the low-

type agents, while it decreases the labor supply elasticity of the high-type agents. That is, ∂εl∂ω > 0

and ∂εh
∂ω < 0.

Intuitively, greater progressivity (or a higher ω) shifts ãl to the left where the distribution of

assets is denser. There, the same change in z would influence more agents’employment decisions,

thereby leading to a greater elasticity of the low type. In contrast, greater progressivity shifts ãh

to the right around which the distribution of assets is scarcer. A fewer number of agents around

the new employment threshold implies that the elasticity of the high type agents would become

smaller.

Proposition 3 Let N denote the aggregate employment rate: N = πlNl + πhNh. Let ε be the

aggregate labor supply elasticity:

ε ≡ ∂N

∂z

z

N
.

The aggregate labor supply elasticity is higher with greater progressivity. That is, ∂ε
∂ω > 0.

This result is straightforward given Propositions 1 and 2 and the fact that f(a) is more concen-

trated as a becomes lower. This result underlies one of our main findings in Section 5 showing that

incorporating progressive government transfers allows the quantitative business cycle model with

household heterogeneity to generate a large volatility of aggregate hours over the business cycle.

Next, we consider the implications for the cyclicality of average labor productivity. Define

13Note that
∑
πiTi = πlT (1 + ωλ) + πhT (1− ωλ) = T.
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average labor productivity as

χ ≡
∑

j∈{l,h} πi (zxiNi)∑
j∈{l,h} πiNi

= z

∑
j∈{l,h} πi (xiNi)∑
j∈{l,h} πiNi

.

Letting χ = zχ0, we can see that aggregate productivity z would directly make average labor

productivity procyclical, as in real business cycle models. In addition, the second term χ0 captures

the effects of worker composition on average labor productivity. Note that χ0 also depends indirectly

on z through type-specific employment responses. The following two propositions focus on the

second term.

Proposition 4 The effect of z on average labor productivity through worker composition effects is

negative. That is, ∂χ0∂z < 0.

Proposition 5 Average labor productivity becomes less procyclical with greater progressivity. That

is, ∂
∂ω

(
∂χ0
∂z

)
< 0.

Proposition 5 tells us that progressivity in the transfer schedule shapes the cyclicality of average

labor productivity through worker composition effects. Specifically, it implies that greater progres-

sivity would make average labor productivity less procyclical, as illustrated in a numerical example

in the right panel of Figure 2. The intuition behind this result is in fact related to Propositions 1

and 2. Note that the positive impact of progressivity on aggregate labor supply responsiveness in

Proposition 3 (as depicted in the left panel of Figure 2) is driven by the low type having a stronger

labor supply response to a change in z. If a fall in z (e.g., in a recession) generates a large fall in

the labor supply of the low type (especially relative to the high type), it would then tend to raise

average labor productivity, while output falls. This force dampens the tight positive link between

z and average labor productivity.

Before we move on, it is worth discussing our assumption that Fl(a) = Fh(a). In other words, the

conditional distribution of assets for each type is assumed to be identical. In fact, it should be noted

that this assumption is quite conservative. For example, if we assume that Fi(a) = 1− exp(− 1
µi
a)

and µl < µh (as is consistent with the data), the distribution of assets for the low type would become

more packed around the threshold asset level, which in turn would strengthen the above results (due
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Figure 2: Impact of progressivity on aggregate labor market
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Note: A numerical example of Propositions 1-5, based on b = 2, λ = 0.2, T = 0.1, and z = 1.53 to match the

aggregate employment rate of 75% when ω = 0.

to the even more elastic labor supply of the low-type). Furthermore, this highlights the importance

of the persistence of idiosyncratic shocks in a dynamic environment where the distribution of assets

is endogenously determined because higher persistence would enlarge the difference of the mean of

assets across idiosyncratic productivity types.14

In the next sections, we imbed these key insights into standard equilibrium business cycle

models with more realistic household heterogeneity to explore how this mechanism can alter the

model-implied dynamics of macroeconomic aggregates.

3 Quantitative business cycle models

In this section, we describe the economic environment of the quantitative business cycle models

studied in this paper. We consider four model specifications. The first is the baseline model with

household heterogeneity and progressive government transfers. The other alternative specifications

are considered to illustrate the importance of the interplay between household heterogeneity and

government transfers.

14As an extreme example, consider the case where the idiosyncratic shock has zero persistence (i.i.d.). In this case,
the equilibrium asset distribution for each type would become identical, as in this section.
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3.1 Heterogeneous-agent models

In this subsection, we introduce the first two model specifications with heterogeneous households.

The first is the baseline model with government transfers, denoted as Model (HA-T). The second,

denoted as Model (HA-N), is simply a nested specification of the baseline model by shutting down

government transfers. This model roughly corresponds to a standard incomplete-markets real

business cycle model with household heterogeneity and endogenous labor supply at the extensive

margin (Chang and Kim, 2007; 2014). In other words, the baseline model economy extends Chang

and Kim (2007, 2014) by incorporating labor taxes and progressive government transfers.

Households:

The model economy is populated by a continuum of infinitely-lived households. It is convenient

to describe the infinitely-lived household’s decision problem recursively. At the beginning of each

period, households are distinguished by their asset holdings a and productivity xi.We assume that

xi takes a finite number of values Nx and follows a Markov chain with transition probabilities

πxij from the state i to the state j. In addition to the individual state variables, a and xi, there

are aggregate state variables, including the distribution of households µ(a, xi) over a and xi and

aggregate total factor productivity shocks zk. We also assume that zk takes a finite number of

values Nz following a Markov chain with transition probabilities πzkl from the state k to the state

l. We assume that the Markov processes for individual productivity x and aggregate productivity

z capture the following continuous AR(1) processes in logs.

log x′ = ρx log x+ ε′x (1)

log z′ = ρz log z + ε′z (2)

where εx ∼ N(0, σ2x) and εz ∼ N(0, σ2z). A variable with a prime denotes its value in the next

period. Finally, we assume competitive markets; in other words, households take as given the wage

rate per effi ciency unit of labor w(µ, zk) and the real interest rate r(µ, zk), both of which depend

on the aggregate state variables. Households take as given government policies.
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The dynamic decision problem of households can be written as the following functional equation:

V (a, xi, µ, zk) = max
{
V E(a, xi, µ, zk), V

N (a, xi, µ, zk)
}

where

V E(a, xi, µ, zk) = max
a′>a,
c≥0

log c−Bn̄+ β

Nx∑
j=1

πxij

Nz∑
l=1

πzklV (a′, x′j , µ
′, z′l)

 (3)

subject to c+ a′ ≤ (1− τ)w(µ, zk)xin̄+ (1 + r(µ, zk))a+ T (w(µ, zk)xin̄+ r(µ, zk)a)

µ′ = Γ(µ, zk).

and

V N (a, xi, µ, zk) = max
a′>a,
c≥0

log c+ β

Nx∑
j=1

πxij

Nz∑
l=1

πzklV (a′, x′j , µ
′, z′l)

 (4)

subject to c+ a′ ≤ (1 + r(µ, zk))a+ T (r(µ, zk)a)

µ′ = Γ(µ, zk).

Households maximize utility by choosing optimal consumption c, asset holdings in the next period

a′, and labor supply n. The labor supply decision is assumed to be discrete n ∈ {0, n̄}. The

disutility of work is captured by B > 0. Households understand that the expected future value,

discounted by a discount factor β, is affected by stochastic processes for individual productivity x′

and aggregate productivity z′ as well as the whole distribution µ′. The evolution of µ is governed by

the law of motion µ′ = Γ(µ, zk). The budget constraint states that the sum of current consumption

c and asset demands for the next period a′ should be less than or equal to the sum of net-of-

tax earnings (1 − τ)w(µ, zk)xin, current asset holdings and capital income (1 + r(µ, zk))a, and

government transfers T (·). We allow transfers to depend on income, and we elaborate on it below.

Households face a borrowing limit a = 0.15

15We have considered a version of the model that incorporates a moderate non-zero borrowing limit. The main
results found in this paper are barely affected by this.
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Government:

There is a government that taxes labor earnings at a fixed rate of τ . The government uses the

collected tax revenue to finance transfers to households. The remaining tax revenue is spent as

government spending, which is not valued by households.

Following Krusell and Rios-Rull (1999), we assume that transfers T consist of two components

(i.e., T = T1 + T2). The first component T1 is given to all households equally whereas the second

component T2 captures the income security aspect of transfers. In the U.S., there are various means-

tested programs such as food stamps, the Supplemental Nutrition Assistance Program and the

Temporary Assistance for Needy Families (formerly the Aid to Families with Dependent Children).

As shown in Section 4, these programs lead to the observation that the amount of transfers is

negatively associated with income. We assume that T2 depends on total household income m to

replicate the progressivity observed in the U.S. data using the following functional form (Yum,

2018):16

T2(m) = ωs(1 +m)−ωp . (5)

This parametric assumption adds two parameters. First, ωs ≥ 0 is a scale parameter, which

determines the overall size of progressive part of government transfers (i.e., T2). The next parameter

ωp ≥ 0 governs the degree of progressivity: a higher ωp would make T2 decrease faster with income.

Note that ωp = 0 would imply that the transfer schedule is independent of income, which is

commonly used in the literature.

Firm:

Aggregate output Y is produced by a representative firm. The firm maximizes its profit

max
K,L
{zkF (K,L)− (r(µ, zk) + δ)K − w(µ, zk)L} (6)

where F (K,L) captures a standard neoclassical production technology in which K denotes aggre-

gate capital, L denotes aggregate effi ciency units of labor inputs, and δ is the capital depreciation

rate. As is standard in the literature, we assume that the aggregate production function follows a

16Alternatively, we have also considered a verion of the model with a productivity-dependent transfer schedule
(e.g., Oh and Reis, 2012), and found that the main results on business cycles are quite similar to the current version.

14



Cobb-Douglas function with constant returns to scale:

F (K,L) = KαL1−α. (7)

The first-order conditions for K and L give

r(µ, zk) = zkF1(K,L)− δ, (8)

w(µ, zk) = zkF2(K,L). (9)

Equilibrium:

A recursive competitive equilibrium is a collection of factor prices r(µ, zk), w(µ, zk), household

decision rules ga(a, xi, µ, zk), gn(a, xi, µ, zk), government policy variables τ,G, T (·), a value function

V (a, xi, µ, zk), a distribution of households µ(a, xi) over the state space, the aggregate capital and

labor K(µ, zk), L(µ, zk) and the aggregate law of motion Γ(µ, zk) such that

1. Given factor prices r(µ, zk), w(µ, zk) and government policy τ,G, T (·), the value function

V (a, xi, µ, zk) solves the household’s decision problems defined above, and the associated

household decision rules are

a′∗ = ga(a, xi, µ, zk) (10)

n∗ = gn(a, xi, µ, zk). (11)

2. Given factor prices r(µ, zk), w(µ, zk), the firm optimally chooses K(µ, zk) and L(µ, zk) follow-

ing (8) and (9).
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3. Markets clear:

K(µ, zk) =

Nx∑
i=1

∫
a
adµ (12)

L(µ, zk) =

Nx∑
i=1

∫
a
xign(a, xi, µ, zk)dµ. (13)

4. Government balances its budget:

G+

Nx∑
i=1

∫
a
T (m)dµ = τwL(µ, zk).

5. The law of motion for the distribution of households over the state space µ′ = Γ(µ, zk) is

consistent with individual decision rules and the stochastic processes governing xi and zk.

3.2 Representative-agent models

In addition to the heterogeneous-agent model specifications, i.e., Models (HA-T) and (HA-N),

we consider two additional specifications of the representative-agent model. First, Model (RA-

T) shuts down household heterogeneity while maintaining the fiscal environment including taxes

and transfers, as in Model (HA-T). Given the indivisible labor assumption, our representative-agent

version of the model is essentially the business cycle model studied in Hansen (1985) augmented with

tax and transfers. Next, Model (RA-N) shuts down both household heterogeneity and government

transfers. We consider the decentralized competitive equilibrium given distortionary labor taxation.

Representative-agent model environment:

At the beginning of each period, the stand-in household has the current period’s assets k. The

aggregate state variables are the aggregate capital K and the aggregate productivity zk. The

aggregate productivity follows the same stochastic process as in the baseline model. Taking the

wage rate w(K, zk) and the real interest rate r(K, zk), as well as the aggregate law of motion

Γ(K, zk) as given, the dynamic decision problem of the representative household can be written as

the following functional equation:
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V (k,K, zk) = max
k′≥0,c≥0
n∈[0,1]

{
log c−Bn+ β

Nz∑
l=1

πzklV (k′,K ′, z′l)

}

subject to c+ k′ ≤ (1− τ)w(K, zk)n+ (1 + r(K, zk))k + T1

K ′ = Γ(K, zk)

The household maximize utility by choosing optimal consumption c, the next period’s capital k′ and

labor supply n. The stand-in household’s utility is linear in employment n due to the aggregation

theory in Rogerson (1988). The budget constraint states that the sum of consumption c and

the next period’s capital k′ should be less than or equal to the sum of net-of-tax labor income

(1− τ)w(K, zk)n, current capital k, capital income r(K, zk)k and government transfers T .

Government collects taxes on labor earnings τwn to finance transfers T1 and government expen-

diture G. We keep the same assumptions on the firm side, as in the heterogeneous-agent models.

The resulting first-order conditions for K and L are the same as those in (8) and (9).

Equilibrium:

A recursive competitive equilibrium is a collection of factor prices r(K, zk), w(K, zk), household

decision rules gk(k,K, zk), gn(k,K, zk), government policy variables τ , G, T , the household value

function V (k,K, zk), the aggregate labor L(K, zk) and the aggregate law of motion for aggregate

capital Γ(K, zk) such that

1. Given factor prices r(K, zk), w(K, zk) and government policy τ , G, T , the value function

V (k,K, z) solves the household’s decision problem, and the associated decision rules are

k′∗ = gk(k,K, zk)

n∗ = gn(k,K, zk).

2. Prices r(K, zk), w(K, zk) are competitively determined following (8) and (9).
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3. Government balances its budget:

G+ T = τw(K, zk)L(K, zk).

4. Consistency is satisfied: for all K,

K ′ = Γ(K, zk) = gk(K,K, zk)

L(K, zk) = gn(K,K, zk).

3.3 Solution method

Our heterogeneous-agent models (i.e., Model (HA-T) and Model (HA-N)) cannot be solved ana-

lytically, are thus solved numerically. Several key features make the numerical solution method

nontrivial. First, key decision variables in our model are a discrete employment choice and a

consumption-savings choice in the presence of a borrowing constraint. Therefore, our solution

method is based on the nonlinear method (i.e., the value function iteration) applied to the recur-

sive representation of the problem described above. Second, the aggregate law of motion and state

variables involve an infinite-dimensional object: the distribution µ. Therefore, we solve the model

by approximating the distribution of wealth by the mean of the distribution (Krusell and Smith,

1998). In addition, since market-clearing is nontrivial in our model with endogenous labor, our

solution method incorporates a step to find market-clearing prices in each period when simulating

the model.

We describe the solution method briefly.17 Following Krusell and Smith (1998), we assume

that households use a smaller object that approximates the infinite-dimensional distribution when

they forecast the future state variables to make current decisions. More precisely, we approximate

µ(a, xi) by its mean of the asset distribution K =
∫
a

∑Nx
i=1 adµ. Also, the next period’s aggregate

capital K ′, real wage rate w and real interest rate r are assumed to be functions of (K, z) instead

of (µ, z). We impose the parametric assumptions to approximate the aggregate law of motion

17See Appendix F for more details.
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K ′ = Γ(K, z) and w = w(K, z) following

K̂ ′ = Γ̂(K, z) = exp (a0 + a1 logK + a2 log z) (14)

ŵ = ŵ(K, z) = exp (b0 + b1 logK + b2 log z) , (15)

as in Chang and Kim (2007, 2014) and Takahashi (2014, 2018). Based on these forecasting rules,

households obtain a forecasted r̂ implied by the first-order conditions of firm’s profit maximization

problem.

Given the above forecasting rules, the model is solved in the two steps. First, we solve for the

individual policy functions given the forecasting rules using the value function iterations (the inner

loop). Then, we update the forecasting rules by simulating the economy using the individual policy

functions (the outer loop). As noted above, it is important to note that, since our model environment

with endogenous labor supply involves non-trivial factor market clearing, we incorporate a step to

find market-clearing factor prices in the outer loop (Chang and Kim, 2014; Takahashi, 2014). We

repeat this procedure until the coeffi cients in the forecasting rules converge.

It is more straightforward to solve the representative-agent version of the model. Due to the

distortionary tax, we solve the decentralized competitive equilibrium. For the purpose of compar-

ison, we keep the same assumptions on the discretization of the aggregate productivity process as

in the heterogeneous-agent model. The steady-state equilibrium can be obtained analytically. For

solutions with aggregate uncertainty, we use the policy function iteration method.

4 Calibration and model properties in steady state

The model is calibrated to U.S. data. A period in the model is a quarter, as is standard in the

business cycle literature. There are two sets of parameters. The first set of parameters is calibrated

externally, in line with the business cycle literature. These parameter values are commonly set in

all model specifications. The second set of parameters is calibrated to match the same number of

relevant target statistics.

We begin with describing the first set of externally-calibrated parameters. Most of these para-

meters are commonly used in the real business cycle literature. The capital share, α, is chosen to
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Table 1: Parameter values chosen internally

Model
(HA-T) (HA-N) (RA-T) (RA-N) Description

B = .623 .880 .918 1.09 Disutility of work
β = .987 .985 .990 .990 Subject discount factor
ρx = .983 .976 - - Persistence of lnx
σx = .103 .132 - - S.D. of innovations to lnx
T1 = .103 - .295 - Overall transfer size
ωs = .091 - - - Progressive transfer scale
ωp = 3.34 - - - Progressivity of transfers

Note: Model (HA-T) is the baseline specification: a heterogeneous-agent model with government transfers. Model

(HA-N) shuts down government transfers but keeps household heterogeneity. Model (RA-T) abstracts from house-

hold heterogeneity but keeps government transfers. Model (RA-N) shuts down both heterogeneity and government

transfers. All model specifications have the same labor taxation.

be consistent with the capital share of 0.36. The quarterly depreciate rate, δ, is 2.5 percent. In

our model specifications with a binary labor supply choice, the level of hours worked, n̄, can be

arbitrarily set since it simply determines the scale of the calibrated disutility parameter B. We set

it to 1/3, implying that working individuals spend a third of their time endowment on working.

The labor income tax, τ , is set to 27.9 percent (Trabandt and Uhlig ,2011; and Yum, 2018), based

on the method proposed by Mendoza et al. (1994). Finally, it is worth noting that the main goal

of this paper is to study how heterogeneity interacts with progressive transfers in the presence

of aggregate shocks. As a first step, we consider total factor productivity shocks (Kydland and

Prescott, 1982) as aggregate risk, and employ standard values of ρz = 0.95 and σz = 0.007 (Cooley

and Prescott, 1995), which are also used by recent related papers such as Chang and Kim (2007,

2014) and Takahashi (2018).18

The second set of parameters is jointly calibrated in each specification of the model. As shown

in Table 1, there are seven parameters in Model (HA-T), and four parameters in Model (HA-

N) that shuts down government transfers. Unlike the heterogeneous-agent models that require

simulation to calibrate these parameters, the representative-agent models are easy to calibrate

18An interesting exercise to be followed in the future is to investigate how our results would carry over in the presence
of other types of aggregate shocks on top of the standard TFP shocks. The estimation of multiple aggregate shocks
within a model with heterogeneous agents is an important yet diffi cult task at this stage due to the computational
costs.
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using the analytical optimality conditions (see Appendix E). Our discussion herein focuses on

the heterogeneous-agent model specifications. The parameter values reported in Table 1 are the

calibrated values by matching the same number of target statistics summarized in Table 2.

We now explain how each parameter is linked to the target statistics. The first parameter is

B, which captures the disutility of work. The most relevant target moment is the employment

rate of 75.0 percent in our SIPP samples. The next parameter β captures the discount factor of

households. As is standard in the literature, it is targeted to match the quarterly interest rate of

1 percent.

The next two parameters, ρx and σx, govern the dynamics of idiosyncratic labor productiv-

ity. Note that there are two issues that are worth highlighting regarding how to calibrate these

parameters. First, there is a discrepancy in time frequency between the model and the data: the

model period is a quarter, while the wage data that are widely used to estimate wage or earnings

processes in the literature are at the annual frequency. Thus, a simple transformation of an annual

persistence estimate to a quarterly value may be subject to a nontrivial temporal aggregation bias

because labor supply is endogenous at a higher frequency in the model. Furthermore, there is a

well-known selection issue because we only observe wages if households choose to work. To address

both issues, we first estimate the persistence of idiosyncratic wage risk using the PSID following

a standard method in the literature (e.g., Heathcote et al. 2010). The estimation result shows

that the persistence of wages at the annual frequency is 0.953, in line with the previous estimates

in the literature. Then, we calibrate the model so that the persistence of annual wages that are

constructed by the simulated quarterly data from the model matches 0.953.19 Next, the standard

deviation of innovations to the AR(1) process, σx, in (1) is calibrated to match the overall disper-

sion of annual earnings that are also directly constructed by the simulated quartely data in the

model. This calibration strategy makes sure that the two heterogeneous-agent models have the

same degree of the observed earnings inequality in U.S. data, measured by the standard deviation

of log earnings at the annual frequency (0.623).

19More precisely, we simulate the model and construct annual wages by dividing annual earnings by annual hours
worked through explicit temporal aggregation. Note that although labor supply is a binary choice at the quarterly
frequency, there are richer variations in the annual hours worked driven by the number of quarters worked, affected
by both idiosyncratic and aggregate shocks. Erosa, Fuster and Kambourov (2016) highlight a similar point in a
stationary environment in the absence of business cycles.
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Table 2: Target statistics in the data and in the model

Model
Target Data (HA-T) (HA-N) (RA-T) (RA-N)

Employment rate .750 .750 .750 .750 .750
Real interest rate .010 .010 .010 .010 .010
Persistence of annual worker wages .953 .953 .953 - -
S.D. of log annual worker earnings .623 .622 .623 - -
Ratio of T1 + T2 to output .102 .102 - .102 -
Ratio of T2 to output .020 .020 - - -
E(T2|1st income quintile)/E(T2) 3.01 3.01 - - -

Note: See Table 1 for the description of the model specifications.

The last three parameters, T1, ωs and ωp, govern statistics regarding transfers. The first target

statistic regarding transfers is set as an aggregate transfers-output ratio of 10.2%, which is obtained

as the time-series average of the ratio of transfers to output over the years 1961-2016 according to

the BEA data. Recall that the two components of transfers can be distinguished in Model (HA-T):

the parameter T1 determines the size of flat government transfers and ωs determines the scale of

progressive transfers (T2). Therefore, Model (HA-T) has an additional target statistic regarding

the size of progressive transfers. As for this, we compute the average of income-security related

government expenditures on social benefits (Table 3.12) over the years 1961-2016 (2.0% of output)

in the BEA data.20 Since Model (RA-T) lacks heterogeneity, T2 is irrelevant. Next, note that ωp

shapes the degree of progressivity in government transfers. Our calibration strategy is to let the

model to replicate an empirically reasonable degree of trasnfer progressivity through ωp. For this

purpose, we measure the degree of progressivity in the U.S. transfer programs using the SIPP data.

We construct a broad measure of government transfers, including means-tested programs and social

insurance (as detailed in Appendix C). Since these welfare-related programs are highly relevant

for the poor households, we choose the ratio of the average means-tested transfers received by the

first income quintile to its unconditional mean (3.01) as a target statistic, as in Yum (2018).

Table 2 shows that all model specifications do a good job of matching the target statistics.

20We select the components to be consistent with our measure of transfers in the SIPP data, as describe below.
Our classification of transfers are similar to Krusell and Rios-Rull (1999). See Appendix B for details.
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Table 3: Characteristics of wealth distribution

Unit: % Wealth quintile
1st 2nd 3rd 4th 5th

Share of wealth
U.S. Data -1.6 1.7 7.8 19.0 73.9
Model (HA-T) 0.2 1.2 7.8 20.5 70.3
Model (HA-N) 0.0 1.5 9.6 23.4 65.5

Employment rate
U.S. Data 68.6 76.2 77.4 78.1 74.5
Model (HA-T) 72.2 87.3 76.5 76.3 62.7
Model (HA-N) 100.0 88.6 74.7 59.5 52.0

Note: The source of U.S. data is the Survey of Income and Program Participation 2001. See Table 1 for the description

of the model specifications.

This does not necessarily mean that the model does a good job of accounting for other relevant

statistics. We thus present (non-targeted) distributional aspects of the model economy in steady

state. First, Table 3 summarizes the share of wealth, employment rates by wealth quintile. Overall,

both heterogeneous-agent model specifications do a good job of accounting for the share of wealth

by wealth quintile. A closer look reveals that Model (HA-T) does a better job of accounting for

the wealth concentration at the top of the wealth distribution. Specifically, the relative shares of

the fourth and fifth quintiles are noticeably closer to the data (19.0% and 73.9%, respectively) in

Model (HA-T) (20.5% and 70.3%, respectively) compared to Model (HA-N) (23.4% and 65.5%,

respectively). Because that the presence of government transfers reduces households’ incentive

to save (Hubbard, Skinner and Zeldes, 1995), the relative share of wealth by households in the

top wealth quintile that receive little transfers becomes larger in Model (HA-T) with progressive

government transfers.

When we look at the employment rate by wealth quintile, it is clear that Model (HA-T) does

a significantly better job of accounting for the cross-sectional employment-wealth relationship. In

the U.S., the employment rate of the first wealth quintile is relatively low (68.6%), compared to

that of the second quintile (76.2%), and then it declines with wealth. This weakly inverse-U shape

of the employment rates across wealth quintiles in the data are well captured in Model (HA-T).

On the other hand, Model (HA-N) predicts that employment falls sharply with wealth, consistent
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Table 4: Progressivity of income-security transfers

Unit: % Income quintile
1st 2nd 3rd 4th 5th

Conditional mean/unconditional mean
U.S. Data 3.01 1.15 0.61 0.30 0.18
Model (HA-T) 3.01 1.05 0.54 0.29 0.11

Note: The source of U.S. data is the Survey of Income and Program Participation 2001.

with the findings in Chang and Kim (2007). The sharp difference in the cross-sectional wealth-

employment relationship between Model (HA-T) and Model (HA-N) is due to the presence of

government transfers, which mitigates the excessively strong precautionary motive of employment

among the poor households in this class of the incomplete markets framework (Yum, 2018).

Lastly, Table 4 shows the joint relationship between income and transfers. Specifically, the

reported numbers are the ratio of average progressive-component transfers in each income quintile

to the unconditional mean progressive-component transfers. In the U.S., there is a clear negative

relationship between the amount of income-security transfers and income. Note that, in the model,

this is a complicated equilibrium object, which is shaped not only by the parametric assumption

on the nonlinear transfer schedule (5) but also by the endogenous household heterogeneity (which

is in turn shaped by consumption-saving and labor supply decisions). Despite the relatively simple

functional form (5), we can see that the model does an excellent job of replicating the degree of

the transfer progressivity in the U.S.

5 Quantitative results

In this section, we report the main business cycle results and illustrate the mechanism underlying

the main quantitative results.

5.1 Business cycle statistics

We first compare business cycle statistics of key macroeconomic variables from simulations of the

models to those from the data. We filter all the series using the Hodrick-Prescott filter with a
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Table 5: Volatility of aggregate variables

Model
U.S. data (HA-T) (HA-N) (RA-T) (RA-N)

σY 1.50 1.45 1.39 1.98 1.88
σC/σY 0.58 0.22 0.27 0.21 0.24
σI/σY 2.96 2.65 2.73 2.82 2.80
σL/σY - 0.61 0.57 - -
σH/σY 0.98 0.83 0.55 0.85 0.82
σY/H/σY 0.52 0.41 0.49 0.21 0.24

Note: See Table 1 for the description of the model specifications. Each quarterly variable is logged and detrended

using the Hodrick-Prescott filter with a smoothing parameter of 1600. Volatility is measured by the percentage

standard deviation of each variable. The U.S. statistics are based on aggregate time-series from 1961Q1 to 2016Q4.

smoothing parameter of 1600. The U.S. data statistics are computed using the aggregate data

from 1961Q1 to 2016Q4 (see Appendix B for more details). Table 5 summarizes the cyclical

volatility of the key aggregate variables: Y is output, C is consumption, I is investment, L is

aggregate effi ciency unit of labor, H is aggregate hours, and Y/H is average labor productivity.

The volatility is measured by the percentage standard deviation, as is standard in the literature.

Except for the output volatility, we report the relative volatility, computed as the absolute volatility

of each variable divided by that of output.

The most notable finding in Table 5 is that a very high volatility of aggregate hours observed

in U.S. data (σH/σY = 0.98) is well accounted for by Model (HA-T). This finding is notable for

several reasons. First, note that standard real business cycle models are known to have diffi culties

in generating a large relative volatility of hours without relying on a low curvature of the utility

function (or a high Frisch elasticity). In fact, Models (RA-T) and (RA-N) have the stand-in

household whose disutility is linear in aggregate hours. When the utility function features zero

curvature in the labor supply, we can see that these models indeed generate a substantial relative

volatility of hours (0.85 and 0.82, respectively), as shown in Hansen (1985). It is striking that our

baseline model, Model (HA-T), delivers a comparably high volatility of hours (0.83).

Chang and Kim (2006) have demonstrated that a large relative volatility of hours obtained

through indivisible labor (Rogerson, 1988) in Hansen (1985) may not be robust to incomplete-

25



Table 6: Cyclicality of aggregate variables

Model
U.S. data (HA-T) (HA-N) (RA-T) (RA-N)

Cor(Y,C) 0.81 0.80 0.84 0.77 0.81
Cor(Y, I) 0.90 0.99 0.99 0.99 0.99
Cor(Y,L) - 0.96 0.95 - -
Cor(Y,H) 0.86 0.92 0.96 0.99 0.99
Cor(Y, Y/H) 0.30 0.58 0.95 0.77 0.81
Cor(H,Y/H) -0.23 0.21 0.83 0.66 0.70

Note: See Table 1 for the description of the model specifications. Each quarterly variable is logged and detrended

using the Hodrick-Prescott filter with a smoothing parameter of 1600. Cyclicality is measured by the correlation of

each variable with output. The statistics are based on aggregate time-series from 1961Q1 to 2016Q4.

markets economies with heterogeneous households.21 We can see this point also in Table 5, show-

ing that Model (HA-N) is considerably less successful in accounting for the large volatility of hours

among the four model specifications using indivisible labor. However, our result from Model (HA-

T) suggests that once progressive government transfers are incorporated, the heterogeneous-agent

incomplete-markets model may perform as well as the Hansen-Rogerson (stand-in household) econ-

omy in terms of a large fluctuation of hours over the business cycle.

Having highlighted the most notable difference across the four models, we also note that there

are also interesting differences in the volatility of macroeconomic aggregates. For instance, the

volatility of consumption and average labor productivity over the business cycle tends to be more

consistent with the data in the heterogeneous-agent models than those in the representative-agent

models.22 In both the heterogeneous-agent and representative-agent models, the introduction of

transfers tends to reduce the volatility of consumption. This is not surprising, given the nature of

government transfers, which effectively provide insurance against aggregate shocks.

We now move on to the focus of this paper: the cyclicality of macroeconomic variables. The

first five rows of Table 6 show the correlations of output with other aggregate variables considered

in Table 5. The last row shows the correlation between aggregate hours and labor productivity. As

is well known in the literature (e.g., King and Rebelo, 1999), most macroeconomic variables such as

21The relative volatility of hours in Chang and Kim (2014) and Takahashi (2014) is very similar to the estimate
implied by our (HA-N) model.
22Note that in the representative-agent models, average labor productivity is proportional to consumption.
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consumption, investment, and aggregate hours are highly procyclical in the U.S. Table 6 shows that

the strongly positive correlations with output are fairly well replicated in all model specifications

regardless of heterogeneity. Therefore, one may conclude that heterogeneity seems irrelevant, at

least in regard to explaining highly procyclical macroeconomic variables over the business cycle.

However, we emphasize that there is a key difference in average labor productivity. In the

U.S., average labor productivity does not feature strong procyclicality (i.e., Cor(Y, Y/H) = 0.30).

A related observation is that the correlation between hours and average labor productivity is

even weakly negative (−0.23). In contrast, canonical real business cycle models generate highly

procyclical average labor productivity, and thus fail to replicate the cyclicality of average labor

productivity, as is well known in the literature. High correlations between output and average labor

productivity in Models (RA-T) and (RA-N) (0.77 and 0.81, respectively) manifest this weakness

as well.23

The most notable finding in Table 6 is that the cyclicality of average labor productivity is

considerably smaller (0.58) in Model (HA-T), as it is closer to the data (0.30). The literature has

suggested various possibilities to dampen strongly positive correlations of average labor productivity

with output and hours (Benhabib, Rogerson, and Wright, 1991; Christiano and Eichenbaum, 1992;

Braun, 1994; and Takahashi, 2018). In contrast to the existing literature, which relies on additional

exogenous shocks, the key to our result is the interaction between household heterogeneity and

the presence of government transfers, which generates heterogeneous labor supply behavior across

households. In fact, Model (HA-N) which features household heterogeneity, still generates a very

high correlation of 0.95, implying that heterogeneity per se cannot dampen highly procyclical

average labor productivity in real business cycle models. In the next subsection, we investigate the

mechanism underlying our quantitative success.

5.2 Impulse responses

We now present impulse response functions to better understand the main findings in the previous

subsection. Figure 3 shows the impulse responses of the key aggregate variables such as output,

consumption, aggregate hours, average labor productivity, and investment following a persistent
23These correlations would become even higher in models without indivisibility of labor (Hansen, 1985) or without

the distortionary labor tax.
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Figure 3: Impulse responses of macroeconomic aggregates
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Note: TFP denotes the total factor productivity (or aggregate productivity shocks). The figures display the responses

of macroeconomic aggregates to a negative 2 percent TFP shock with persistence ρz.

negative 2% shock to z (or TFP) in the first three model specifications.24 The impulse response

of aggregate hours clearly confirms that Model (HA-T) (solid line) delivers a substantially larger

fall in hours than Model (HA-N). This reinforces the main finding on a large relative volatility

of hours in Model (HA-T) in Table 5. Interestingly, the fall in aggregate hours in Model (HA-T)

immediately following a negative TFP shock is not as strong.

Another important difference to note is the impulse responses of average labor productivity.

In the representative-agent models, the impulse response of average labor productivity follows

24Since the impulse responses from Model (RA-T) and Model (RA-N) are very similar, the figures in this subsection
does not report the results from Model (RA-N).
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Figure 4: Impulse responses of equilibrium prices
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Note: The figures display equilibrium market-clearing price responses to a negative 2 percent TFP shock with

persistence ρz.

that of consumption, exhibiting an inverse hump shape. In our heterogeneous-agent model without

transfers (i.e., Model (HA-N)), the dynamics of average labor productivity follows a more monotone

pattern of output, which explains a very high correlation of Y/H with Y in Table 6. In contrast,

Model (HA-T) delivers a nontrivial average labor productivity response following a negative TFP

shock; it falls initially, and then it reverts to the original level and then it falls again. This

nontrivial response of average labor productivity clearly illustrates why the cyclicality of average

labor productivity in Model (HA-T) is different from those in the other model specifications.

It is interesting to note that the responses in aggregate output, consumption and investment

from Model (HA-T) resemble those from Model (HA-N) very closely and even those from the

representative model fairly closely. We now attempt to show how our baseline full model (i.e.,

Model (HA-T)) delivers the impulse responses of aggregate hours and average labor productivity

that are markedly different from the other models. In particular, we focus on illustrating why

heterogeneity per se is not suffi cient to generate a large response of total hours and non-trivial

average labor productivity dynamics.

An obvious candidate is the dynamics of equilibrium prices. Figure 4 displays the changes in

market-clearing wage and interest rates following the same negative TFP shock for the first three

model specifications. It appears that the difference across the model specifications is not substantial,

which suggests that our main results are not driven mainly by the difference in equilibrium price
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dynamics.

Next, we investigate the impulse responses at a more disaggregated level. Figure 5 plots the

impulse responses of hours by productivity. Specifically, we categorize households into three groups:

(i) low productivity {xi}4i=1; (ii) mid productivity x5; and (iii) high productivity {xi}6i=9.We see that

households with higher productivity tend to be less elastic in their labor supply. This result shows

that the key insight of Proposition 1 in a simple static model extends to our full heterogeneous-

agent model framework. In particular, Model (HA-T) tends to generate a greater difference in the

amplitude of hours across productivity, due to the presence of progressive transfers (Proposition

2).

However, we note that there is an exception to this positive relationship between the elasticity

and productivity; in Model (HA-N), households with low productivity are highly inelastic in their

labor supply. The reason for this exceptionally inelastic employment response is related to the

finding in Yum (2018), who shows that the absence of public insurance in incomplete markets

models raises the precautionary motive for work among wealth-poor households who lack self-

insurance. When the precautionary motive is too high, this motive dominates the intertemporal

substitution motive, thereby weakening the responses of hours with respect to a persistent fall

in wages (see Figure 5). Note also that this inelastic labor supply in the low-productivity group

provides a key reason for both a relatively weaker volatility of total hours and a very procyclical

average labor productivity in Model (HA-N) relative to Model (HA-T).

6 Microeconomic evidence on heterogeneity in the extensive mar-

gin labor supply responses

As shown in the previous sections, the key element of our model is the existence of heterogeneous

labor supply responses. More precisely, low-wage workers are considerably more elastic in adjusting

labor supply at the extensive margin, which weakens a highly procyclical average labor productivity

and, at the same time, enlarges the volatility of aggregate hours worked over the business cycle.

In this section, we empirically document heterogeneity in labor supply responses to verify whether

our key model mechanism exists in the micro data.
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Figure 5: Impulse responses of hours by productivity
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Note: Households are grouped into low productivity (below median), mid productivity (median), and high produc-

tivity (above median). The figures display employment responses in each group to a negative 2 percent TFP shock

with persistence ρz.

Specifically, we exploit the panel structure of the PSID to explore whether extensive margin

labor supply responses differ by the hourly wage. The panel structure is useful because we can

keep track of the same people whose labor supply decisions are observed over time. Because labor

supply changes can be measured in different ways and can be shaped by forces at a different

level (idiosyncratic vs. aggregate), we consider two approaches. The first approach focuses on

identifying the probability of the extensive margin labor supply adjustment for each individual and

illustrating how it differs by wage. On the other hand, the second approach focuses on differences

in the magnitude of employment rate changes across wage groups during the last six recessions.

We present each empirical analysis in more detail.

As mentioned above, the key object of interest in the first approach is the probability of the

extensive margin adjustment for each individual. Note that it requires us to have relatively long

time-series observations for each individual to obtain a consistent estimate of the adjustment prob-

ability, based on the individual-level flow data.25 Let us fix a year at j. Let i denote an individual

index and t denote the year when the individual is observed. We define the extensive margin

adjustment based on full-time employment, E, consistent with the previous sections. In other

25Since the frequency of the PSID survey has been annual until 1997 and became biannual since 1999, we use the
samples observed annually from the 1969-1997 waves.
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Table 7: Probability of extensive margin adjustment, by wage quintile

Length of tracking each individual T
5 years 10 years 15 years

Wage quintile
in base year

1st 0.097 0.078 0.068
2nd 0.052 0.044 0.041
3rd 0.039 0.036 0.035
4th 0.035 0.033 0.033
5th 0.040 0.039 0.038

Base years 1969-1993 (J = 25) 1969-1988 (J = 20) 1969-1983 (J = 15)
Avg. no. obs in base years 1,743 1,281 927

Total no. obs. 43,580 25,619 13,911
Avg. age in total sample 43.0 43.7 44.4

Note: See text for the definition of the switching probability reported in this table. Numbers in parentheses show

the number of base years.

words, an individual i in year t is full-time employed (i.e., Ei,t = 1) if the annual hours worked are

greater than 1,000 hours.26 Then, we define a binary switching variable, Si,t, such that Si,t = 1 if

Ei,t 6= Ei,t−1 and Si,t = 0 otherwise. We exclude the transition from Ei,t−1 = 1 to Ei,t = 0 if the

individual has a non-zero unemployment spell in period t to rule out transitions caused by layoffs.

Note that, given the length of tracking each individual, T, there are (T − 1) numbers of Si,t for

each individual i. Once we take the average over time, we obtain the individual-specific probability

of extensive-margin adjustment at an annual frequency (i.e., pi,j ≡ 1
T−1

∑j+T−1
t=j+1 Si,t). As we are

interested in differences across wage distribution, we compute pqj , defined as the conditional mean

of pi,j for each individual’s wage quintile bin q ∈ {1, 2, ..., 5} determined in the base year j.

We consider three different values for the length of tracking each individual: T ∈ {5, 10, 15}

because a different value of T entails a trade-off. On the one hand, a larger number is beneficial

because we are more likely to have a consistent estimate of the adjustment probability at the

individual level. On the other hand, a longer time of tracking implies a stricter restriction on

samples (because we keep only samples that are observed for T consecutive years). Given the value

26The results in this section is quite robust to alternative threshold values around 1, 000 for the full time employment.
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Figure 6: Cyclical component of real GDP per capita

Note: A quarterly series of real GDP per capita is detrended using HP filter with a smoothing parameter of 1,600.

of T , we compute the estimates of {pqj}5q=1 by changing the base year j. That way, we attempt

to mitigate variations due to the difference in the initial distribution of wage, which is potentially

affected by business cycle fluctuations. The reported values in Table 7 are the mean switching

probabilities by wage quintile, averaged across the base years, pq ≡ 1
J

∑
pqj where J is the number

of base years (J is reported in parentheses in Table 7).

Table 7 reveals a clear pattern: the individual-level probability of adjusting the labor supply

along the extensive margin is significantly higher among low-wage workers. For instance, when

T = 5, the probability of switching to/from full-time employment among the first wage quintile is

9.7% at the annual frequency. In particular, we can see that this probability tends to decrease with

wage. For the third to fifth quintiles, this probability is relatively flat at approximately 4%. When

T increases, we also find that the key pattern of extensive margin adjustment probabilities across

wage quintiles is still present. Because the samples become slightly older and T becomes longer,

however, we also see that the switching probabilities become generally lower.

The above exercise is based on long-run information on the labor market flow at the individual
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Table 8: Employment changes in recessions, by wage quintile

Recession
1969-71 1973-76 1980-83 1990-92 2000-02 2006-10

Wage quintile
in peak year

1st -6.0 -13.9 -11.2 -7.4 -9.8 -17.7
2nd -6.9 -7.6 -5.3 -8.2 -5.2 -12.9
3rd -4.6 -7.4 -4.8 -5.3 -3.4 -10.8
4th -5.4 -4.9 -6.6 -5.4 -4.5 -10.3
5th -1.7 -5.4 -5.3 -4.4 -1.7 -6.3

No. obs. 1,749 1,838 2,095 2,201 2,970 2,873

Note: The year ranges denote the peak and trough years of each recession. Reported values are percentage point

changes in the employment rate by wage quintiles (in the peak year of each recession) using the same set of individuals.

level. The next empirical exercise, on the other hand, uses the differences in magnitude of the

employment level changes across wage groups during the recessions. More specifically, we choose

six recessions, as evident from Figure 6, which plots the cyclical component of quarterly real GDP

per capita.27 For each recession, we choose a peak year and a trough year, guided by Figure 6. Note

that our definition of peak and trough years is limited by the frequency of the PSID because the

PSID data set is available annually (until 1997) or biannually (since 1999). Therefore, our choice

is also based on the aggregate employment declines in each recession event, according to our micro

samples in the PSID. The resulting year combinations for each recession are shown in Table 8.

For each recession, we compute the conditional mean of full-time employment by wage quintile

in the peak year: 1
Nq
peak

∑
iE

q
i,peak where N

q
peak is the number of observations in the wage quintile

bin q in the peak year. Then, we measure the percentage point changes in the employment rate

by wage quintile in the corresponding trough year: that is, 1
Nq
peak

∑
i

(
Eqi,trough − E

q
i,peak

)
. It is

important to note that we keep the set of households in each wage group fixed by assigning a wage

quintile to each household in the peak year. That way, our measured changes in employment by

wage quintile are not affected by compositional changes, but are rather based on decisions by the

same households.

Table 8 clearly shows that the employment rate fell most sharply in the first and second wage

27A quarterly series of real GDP per capita is detrended using HP filter with a smoothing parameter of 1,600.
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Table 9: Employment changes in recessions excluding samples with unemployment spells, by wage
quintile

Recession
1973-76 1980-83 1990-92 2000-02 2006-10

Wage quintile
in peak year

1st -14.6 -11.5 -7.0 -5.9 -10.8
2nd -6.6 -2.4 -6.7 -3.6 -7.7
3rd -7.2 -5.1 -4.4 -2.2 -5.9
4th -5.8 -7.1 -3.7 -3.7 -6.8
5th -4.0 -6.7 -4.2 -1.3 -4.6

No. obs. 1,469 1,387 1,689 2,511 2,244

Note: See Table 8 for the basic description. The only difference relative to Table 9 is that we exclude samples that

experienced unemployment spells in either the peak year or the trough year. The results for the first recession is

omitted because the unemployment information is available only since the 1976 wave (i.e., since the year of 1975).

quintiles in all of the recessions. Furthermore, the magnitude of the decrease in employment tends

to be smaller as the wage quintile increases. For example, in the last recession (i.e., the Great

Recession), the employment rate among the first wage quintile fell by 17.7 percentage points,

whereas the employment rate among the fifth wage quintile fell by only 6.3 percentage points. This

pattern of employment changes by wage quintiles is quite robust across different recessions despite

variations in the overall changes in the employment rate.28

One may be concerned about the possibility that the wage gradient of employment changes

found in Table 8 is driven mostly by the firms’ demand channel, which may affect household

employment status differentially across the wage distribution. To address this concern, we utilize

the information about the unemployment spell in the PSID data.29 More precisely, we exclude

samples that experience any unemployment spells over the whole survey years belonging to the

range of each recession. That way, we attempt to rule out the effects caused by a differential layoff

probability across the wage distribution. Because we impose the additional sample restriction, the

number of observations in each recession decreases.
28Note that the overall magnitude of the fall in employment is relatively stronger in the recessions of 1973-76,

1980-83 and 2006-10. This finding is, in fact, consistent with relatively larger amplitudes of these recessions, as
shown in Figure 6, providing some external validity for our micro samples.
29This information is available since the 1976 wave.
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Table 9 summarizes the results. In general, we see that the magnitudes of employment changes

are somewhat weaker, implying that the demand channel played a role in reducing aggregate em-

ployment rates in most recessions. However, we note that our key findings in Table 8 still appears

even when we exclude samples that experienced any unemployment spells. First, low-wage workers

experience the largest fall in employment across the wage distribution. Furthermore, we still see

the general pattern that the magnitude of the fall is negatively related to the wage quintiles in

all the recessions. Therefore, we conclude that the salient findings in Table 8 on heterogeneity

in employment changes during the recessions remain robust even after accounting for the firms’

demand channel.

Although the above two approaches are designed to capture different aspects of labor supply

adjustments, they yield consistent results, which demonstrates the robustness of our empirical

result that lower-wage workers adjust the labor supply along the extensive margin more elastically.

More importantly, both of these empirical findings are consistent with the pattern of heterogeneity

in labor supply responses in our model economy, thereby supporting our key mechanism of the

heterogeneous-agent model with progressive government transfers.

7 Conclusion

In this paper, we have explored the interplay of household heterogeneity and progressive govern-

ment transfers in shaping the dynamics of macroeconomic aggregates over the business cycle. We

first presented the key insights using analytical results obtained from a stylized static model of

the extensive margin labor supply with heterogeneous households. We then constructed a full gen-

eral equilibrium business cycle model with household heterogeneity. We have shown that in our

heterogeneous-agent model with progressive government transfers, which is calibrated to match

the micro-level moments, micro-level heterogeneity shapes the dynamics of aggregate labor market

variables substantially when household heterogeneity interacts with progressive government trans-

fers. In particular, our baseline real business cycle model delivers moderately positive correlations

of average labor productivity with output and hours while generating a large relative volatility

of total hours over the business cycle, both of which are diffi cult to account for by standard real
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business cycle models.

Using the panel structure of the PSID, we have also documented that the individual-level prob-

ability of adjusting the labor supply along the extensive margin is significantly higher among low-

wage workers. Furthermore, we have shown that the magnitude of the decline in the employment

rate is considerably larger among low-wage workers during the last six recessions. This microeco-

nomic evidence on the heterogeneous responses of labor supply along the extensive margin supports

the key mechanism of our heterogeneous-agent model with progressive government transfers.

There are several future research questions that can be naturally followed by our study. First,

our analytical result clearly suggests that a more progressive welfare program would reduce the

cyclicality of average labor productivity. In the U.S., the correlation between average labor pro-

ductivity and output has been declining over the last few decades (Galí and van Rens, 2017). At the

same time, there has been a steady increase in the size of welfare programs according to the BEA

data. It would be very interesting to formally quantify how much of the decrease in the cyclicality

of average labor productivity is due to the observed change in the welfare programs. Second, our

analysis shows that larger welfare programs would induce a larger fluctuations of aggregate hours,

driven mostly by low-wage households. Despite current diffi culties in terms of data availability, it

would be interesting to test this model implication using cross-country or cross-state data in future

work.
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Appendix

A Proofs in Section 2

Proof of Proposition 1 Assume Ti = 0. Then, we can rewrite

ãi = zxi.

Therefore,

Ni = 1− exp(−zxi)

Given this, note that

εi ≡
∂Ni

∂z

z

Ni
= xi exp(−zxi)

z

1− exp(−zxi)

=
zxi exp(−zxi)
1− exp(−zxi)

For expositional convenience, assume that x is continuous for now.

ε(x) =
zx exp(−zx)

1− exp(−zx)

∂ε(x)

∂x
=

[
z exp(−zx)− z2x exp(−zx)

]
[1− exp(−zx)]− zx exp(−zx) [z exp(−zx)]

[1− exp(−zx)]2

=
exp(−zx)z [1− zx] [1− exp(−zx)]− z2x exp(−zx) [exp(−zx)]

[1− exp(−zx)]2

=
z exp(−zx) {1− zx− exp(−zx)}

[1− exp(−zx)]2

Since exp(−zx) < 1 for all z, x > 0,

∂ε(x)

∂x
=
z exp(−zx) (1− zx− exp(−zx))

[1− exp(−zx)]2
<
z exp(−zx) (1− zx− 1)

[1− exp(−zx)]2

=
z exp(−zx) (−zx)

[1− exp(−zx)]2
< 0.
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Proof of Proposition 2 Since

∂Nl

∂z
= exp(−ãl)(1− λ),

∂Nh

∂z
= exp(−ãh)(1 + λ).

we have

∂

∂ω

(
∂Nl

∂z

)
= exp(−ãl)(1− λ)Tλ > 0,

∂

∂ω

(
∂Nh

∂z

)
= − exp(−ãh)(1 + λ)Tλ < 0.

Also, note that

∂Nl

∂ω
= − exp(−ãl)Tλ < 0

∂Nh

∂ω
= exp(−ãl)Tλ > 0.

Proof of Proposition 3 Since

ε ≡ ∂N

∂z

z

N

=

(
πl
∂Nl

∂z
+ πh

∂Nh

∂z

)
z

πlNl + πhNh

the aggregate labor supply elasticity is given by

ε = z
exp(−ãl)(1− λ) + exp(−ãh)(1 + λ)

2− exp(−ãl)− exp(−ãh)

where

ãl = z(1− λ)− T − Tωλ

ãh = z(1 + λ)− T + Tωλ.
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Then, we have

∂ε

∂ω
= z

[exp(−ãl)(1− λ)(−1)(−Tλ) + exp(−ãh)(1 + λ)(−1)Tλ] [2− exp(−ãl)− exp(−ãh)]

− [exp(−ãl)(1− λ) + exp(−ãh)(1 + λ)] [− exp(−ãl)(−1)(−Tλ)− exp(−ãh)(−1)Tλ]

[2− exp(−ãl)− exp(−ãh)]2

= zTλ

[exp(−ãl)(1− λ)− exp(−ãh)(1 + λ)] [2− exp(−ãl)− exp(−ãh)]

+ [exp(−ãl)(1− λ) + exp(−ãh)(1 + λ)] [exp(−ãl)− exp(−ãh)]

[2− exp(−ãl)− exp(−ãh)]2

The sign of ∂ε
∂ω is equal to that of the numerator, which can be rewritten as

Numerator = 2(1− λ) exp(−ãl)− (1− λ) exp(−2ãl)− (1− λ) exp(−ãh − ãl)

− 2(1 + λ) exp(−ãh) + (1 + λ) exp(−ãh − ãl) + (1 + λ) exp(−2ãh)

+ (1− λ) exp(−2ãl)− (1− λ) exp(−ãh − ãl)

+ (1 + λ) exp(−ãh − ãl)− (1 + λ) exp(−2ãh)

= 2 [(1− λ) exp(−ãl)− (1 + λ) exp(−ãh) + 2λ exp(−ãh − ãl)] .

Letting θ = (1−λ)
(1+λ) , we can rewrite

2(1 + λ)

[
(1− λ)

(1 + λ)
exp(−ãl)− exp(−ãh) +

2λ

(1 + λ)
exp(−ãh − ãl)

]
= 2(1 + λ) [θ exp(−ãl) + (1− θ) exp(−ãh − ãl)− exp(−ãh)] .

Since exp(−x) is convex, we know

θ exp(−ãl) + (1− θ) exp(− (ãh + ãl)) > exp (−{θãl + (1− θ) (ãh + ãl)})

= exp (−{(1− θ) ãh + ãl}) .
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Applying this inequality, we have

Numerator = 2(1 + λ) [θ exp(−ãl) + (1− θ) exp(−ãh − ãl)− exp(−ãh)]

> 2(1 + λ) [exp (−{(1− θ) ãh + ãl})− exp(−ãh)] ≥ 0

if and only if

(1− θ) ãh + ãl ≤ ãh

ãl ≤ θãh

(1 + λ) [z(1− λ)− T − Tωλ] ≤ (1− λ) [z(1 + λ)− T + Tωλ]

z(1 + λ)(1− λ)− (1 + λ)T − (1 + λ)Tωλ ≤ z(1 + λ)(1− λ)− (1− λ)T + (1− λ)Tωλ

−(1 + λ)− (1 + λ)ωλ ≤ −(1− λ) + (1− λ)ωλ

−1 ≤ ω

which is always satisfied.

Proof of Proposition 4 Note that

χ0 =
(1− λ) (1− exp(−ãl)) + (1 + λ) (1− exp(−ãh))

2− exp(−ãl)− exp(−ãh)

=
1− λ− exp(−ãl) + λ exp(−ãl) + 1 + λ− exp(−ãh)− λ exp(−ãh)

2− exp(−ãl)− exp(−ãh)

=
2− (1− λ) exp(−ãl)− (1 + λ) exp(−ãh)

2− exp(−ãl)− exp(−ãh)
.
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Therefore, we have

∂χ0
∂z

=

[
(1− λ)2 exp(−ãl) + (1 + λ)2 exp(−ãh)

]
[2− exp(−ãl)− exp(−ãh)]

(2− exp(−ãl)− exp(−ãh))2

− [2− (1− λ) exp(−ãl)− (1 + λ) exp(−ãh)] [exp(−ãl) (1− λ) + exp(−ãh) (1 + λ)]

(2− exp(−ãl)− exp(−ãh))2

=
1

(2− exp(−ãl)− exp(−ãh))2



2 (1− λ)2 exp(−ãl) + 2 (1 + λ)2 exp(−ãh)

− (1− λ)2 exp(−2ãl)− (1 + λ)2 exp(−ãh − ãl)

− (1− λ)2 exp(−ãh − ãl)− (1 + λ)2 exp(−2ãh)

−2 (1− λ) exp(−ãl)− 2 (1 + λ) exp(−ãh)

+ (1− λ)2 exp(−2ãl) + (1 + λ) (1− λ) exp(−ãh − ãl)

+ (1 + λ) (1− λ) exp(−ãh − ãl) + (1 + λ)2 exp(−2ãh)


=

2λ(λ− 1) exp(−ãl) + 2λ(λ+ 1) exp(−ãh)− 4λ2 exp(−ãh − ãl)
(2− exp(−ãl)− exp(−ãh))2

=
2λ {(λ− 1) exp(−ãl) + (λ+ 1) exp(−ãh)− 2λ exp(−ãh − ãl)}

(2− exp(−ãl)− exp(−ãh))2
< 0.

Proof of Proposition 5 Define

Φ(ω) ≡ log

(
∂χ0
∂z

)
.

Since the log transformation preserves monotonicity, it suffi ces to show that Φ′(ω) < 0. As

Φ(ω) = log 2λ+ log {(λ− 1) exp(−ãl) + (λ+ 1) exp(−ãh)− 2λ exp(−ãh − ãl)}

− 2 log (2− exp(−ãl)− exp(−ãh))
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we have

Φ′(ω) =
−Tλ(λ− 1) exp(−ãl) + Tλ(λ+ 1) exp(−ãh)

(λ− 1) exp(−ãl) + (λ+ 1) exp(−ãh)− 2λ exp(−ãh − ãl)

− 2
Tλ exp(−ãl)− Tλ exp(−ãh)

2− exp(−ãl)− exp(−ãh)

=

Tλ(1− λ) exp(−ãl) + Tλ(λ+ 1) exp(−ãh)︸ ︷︷ ︸
positive

(λ− 1) exp(−ãl) + (λ+ 1) exp(−ãh)− 2λ exp(−ãh − ãl)︸ ︷︷ ︸
negative

− 2

Tλ [exp(−ãl)− exp(−ãh)]︸ ︷︷ ︸
positive

2− exp(−ãl)− exp(−ãh)︸ ︷︷ ︸
positive

< 0.

B Aggregate data

The business cycle statistics are based on the aggregate time-series data covering from 1961Q1 to

2016Q4. As for output, we use “Real Gross Domestic Product (millions of chained 2012 dollars)”in

Table 1.1.6 of the Bureau of Economic Analysis (BEA). As for consumption, we use expenditures

in non-durable goods and services reported in Table 2.3.5 of the BEA (Personal Consumption

Expenditure). Investment is constructed as the sum of expenditures in durable goods (Table 2.3.5)

and private fixed investment in Table 5.3.5. The real values of consumption and investment are

calculated using the price index for Gross Domestic Product in Table 1.1.4. Data on total hours

worked are obtained from Cociuba et al. (2018). We modified all of the raw time series into those

per capita by dividing the raw data by quarterly population in Cociuba et al.(2018).

A target statistic regarding the size of income-security transfers is based on the aggregate data

obtained from the BEA. Specifically, we use Supplemental Nutrition Assistance Program (SNAP),

Supplemental security income, temporary disability insurance, medical care (Medicaid, general

medical assistance and state child health care programs), supplemental security income in Table

3.12 on Government Social Benefits. Note that we do not include large programs such as Medicare,

unemployment insurance and veterans’benefits.
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C Micro data

For the statistics obtained at the micro level, we use data from the Survey of Income and Program

Participation (SIPP). This data set is representative of the non-institutionalized U.S. population.

The survey period is in a monthly basis. The SIPP covers a wide range of information on income,

wealth, and participation in various transfer programs. We choose the samples from the first wave

to the ninth wave of the SIPP in 2001, covering from 2001 to 2003. The original data set is

composed of a main module and several topical modules. While the main module contains monthly

information on income and transfers, variables such as wealth are reported quarterly in the topical

modules. We combine both modules on a quarterly basis.

We construct variables at household level. Data sets in the SIPP contain not only household

variables but also individual variables. To generate a household variable from its corresponding

individual variable, we take the following steps. First, we identify households with sample unit

identifier (SSUID) and household address id in sample unit (SHHADID). Second, we add up the

values of a variable for all members in a household. The government transfers that is used to infer

the degree of progressivity is based on a broad range of transfer programs including Supplemental

Security Income (SSI), Temporary Assistant for Needy Family (TANF), Supplemental Nutrition

Assistance Program (SNAP), Supplemental Nutrition Program for Women, Infants, and Children

(WIC), childcare subsidy and Medicaid. We do not include age-dependent programs such as Social

Security and Medicare. We construct a variable of household income broadly; it consists of labor

income, income from financial investments, and property income. We consider households whose

head’s age is between 23 and 70. We convert all of their nominal values to the values in 2001 US

dollar using the CPI-U.

D Estimation of the persistence of full-time worker wage risk

We estimate the persistence of idiosyncratic wage risk in the U.S. using the PSID data, follow-

ing Heathcote et al. (2010). We choose samples for the period of 1969-2010. Our measure of

labor productivity is defined as a worker’s relative hourly wage to other individuals. To avoid the

oversampling of low income household heads, we exclude households from the Survey of Economic
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Opportunity. We consider household heads whose age is between 23 and 65. We drop the samples

whose wage is below a half of the minimum wage. The nominal values are converted into the value

of US dollar in 2001 with the CPI-U.

We run the ordinary least square regression of the log of the productivity (hourly wages) on a

dummy for male, a cubic polynomial in potential experience (age minus years of education minus

five), a time dummy, and a time dummy interacted with a college education dummy. We take its

residual, xi,j , as an idiosyncratic productivity that contains a wide range of individual abilities in

the labor market. This stochastic process is composed of the summation of a persistent, ηi,j and a

transitory process, νi,j :

xi,j = ηi,j + νi,j , νi,j ∼ N(0, σ2ν) (16)

η
′
i,j = ρηηi,j−1 + ε

′
i,j , ε

′
i,j ∼ N(0, σ2ε )

We use a Minimum Distance Estimator to estimate the parameters of the process. The mecha-

nism is to find parameters that minimizing the distance between empirical and theoretical moments.

We take the covariance matrix of the residual xi,j as our moments. Let’s denote θ as a vector of

(ρη, σv, σε). Let mj,j+n(θ) be the covariance of the labor productivity between age j and j + n

individuals. m̂j,j+n is defined as the empirical counterpart of mj,j+n(θ). Then,

E [m̂j,j+n −mj,j+n(θ)] = 0 (17)

where

m̂j,j+n =
1

Nj,j+n

Nj,j+n∑
i=1

xi,j · xi,j+n
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The moments can be represented by as an upper triangle matrix:

m̄(θ) =



m0,0(θ) m0,1(θ) · · · · · · m0,J−1(θ) m0,J(θ)

0 m1,1(θ) · · · · · · m1,J−1(θ) m1,J(θ)

0 0 m2,2(θ) · · · m2,J−1(θ) m2,J(θ)

...
...

...
. . .

...
...

0 0 0 · · · mJ−1,J−1(θ) mJ−1,J(θ)

0 0 0 · · · 0 mJ,J(θ)


We denote a vector of M̄(θ) by vectorizing m̄(θ) with length (J+1)(J+2)/2. To estimate parameters

θ, we solve

min
θ

[
ˆ̄M − M̄(θ)

]′
W
[

ˆ̄M − M̄(θ)
]

where the weighting matrix W is set to be an identity matrix.30

E More on calibration for the representative-agent models

It is straightforward to calibrate the parameters of the representative-agent models using the steady

state equilibrium equations. First, β is directly obtained by

β = (1 + r)−1

Then, given the target of T/Y = 0.102 or 0 and L = 0.750, B is obtained by

B =
(1− τ)(1− α)(
1− δKY −

G
Y

)
L

where

K

Y
=

α

r + δ
G

Y
= τ(1− α)− T

Y
.

30Using the identity matrix has been common in the literature since Altonji and Segal (1996) show that the optimal
weighting matrix generate severe small sample biases.
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Finally, since Y
K =

(
K
L

)α−1
, we can obtain K

L , which in turn gives K and thus Y . Then, T is

obtained using T/Y = .102.

F More on numerical methods for the heterogeneous-agent mod-

els

F.1 Solving for the equilibrium with aggregate risk

The models with aggregate risk are solved in the following two steps. First, we solve for the

individual policy functions given the forecasting rules (the inner loop). Then, we update the

forecasting rules by simulating the economy using the individual policy functions (the outer loop).

We iterate the two steps until the forecasting rules converge. That is, the difference between the

old forecasting rule used in the inner loop and the new forecasting rule generated in the outer loop

is small enough.

Inner loop In the inner loop, we solve for the value functions: V (a, xi,K, zk), V
E(a, xi,K, zk)

and V N (a, xi,K, zk), as defined below. These value functions are stored on the non-evenly spaced

grid for a and the evenly spaced grid for K with the number of grid points na = 100 and nK = 5.

We use the bivariate cubic spline interpolation along a and K to evaluate the value functions off

the grid points. Unlike Chang and Kim (2007; 2014) and Takahashi (2014), we discretize stochastic

processes xi and zk by using the Rouwenhorst (1995) method. We find that the approximation of

continuous AR(1) processes with our estimate of very high persistence is considerably better with

the Rouwenhorst method given the same number of grid points.31 Our baseline results are based on

nx = 9 and nz = 7, both of which replicate the true parameters of the continuous AR(1) processes

very well. We have solved the model with a greater number of grid points, but the quantitative

results change very little. To obtain V (a, xi,K, zk) = max
[
V E(a, xi,K, zk), V

N (a, xi,K, zk)
]
, we

31Specifically, we use the simulated data from Rouwenhorst and Tauchen’s methods and estimate the persistence and
the standard deviation of error terms in the AR(1) processes for both aggregate productivity shocks and idiosyncratic
shocks (available upon request). See also Kopecky and Suen (2010).
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solve the following problems

V E(a, xi,K, zk) = max
a′>a,
c>0

log c−Bn̄+ β

Nx∑
j=1

πxij

Nz∑
l=1

πzklV (a′, x′j , K̂
′, z′l)

 (18)

subject to c+ a′ ≤ (1− τ)ŵ(K, zk)xizkn̄+ (1 + r̂(K, zk))a+ T (xi)

and

V N (a, xi,K, zk) = max
a′>a,
c>0

log c+ β

Nx∑
j=1

πxij

Nz∑
l=1

πzklV (a′, x′j , K̂
′, z′l)

 (19)

subject to c+ a′ ≤ (1 + r̂(K, zk))a+ T (xi).

To evaluate the functional value of the expected value function on (a′, K̂ ′) which are not on the grid

points, we use the bivariate cubic spline interpolation. By solving these problems, we obtain the

individual policy function for work gn(a, xi,K, zk), and that for savings conditional on the labor

supply choice:

gEa (a, xi,K, zk) = argmax
a′>a

{
log
(
(1− τ)ŵ(K, zk)xizkn̄+ (1 + r̂(K, zk))a+ T (xi)− a′

)
−Bn̄+ β

Nx∑
j=1

πxij

Nz∑
l=1

πzklV (a′, x′j , K̂
′, z′l)


and

gNa (a, xi,K, zk) = argmax
a′>a

{
log
(
(1 + r̂(K, zk))a+ T (xi)− a′

)
+β

Nx∑
j=1

πxij

Nz∑
l=1

πzklV (a′, x′j , K̂
′, z′l)

 .

Outer loop In the outer loop, we simulate the model economy using the individual policy func-

tions. Two points are worth noting. First, we make sure that V E(a, xi,K, zk) and V N (a, xi,K, zk)

satisfy a single-crossing property with respect to a so that there is a unique threshold asset

a∗(xi,K, zk) for each individual productivity level (conditional on the aggregate state), below

which V E(a, xi,K, zk) > V N (a, xi,K, zk) holds and households choose to work. Second, we find
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the market-clearing prices and the associated aggregate labor in each period during the simulation

(Takahashi, 2014).

The measure of households µ(a, xi) is approximated by a finer (non-evenly spaced) grid on

a than that in the inner loop (Rios-Rull, 1999) with the number of grid points equal to 5000.

K is constructed based on the measure of households following K =
∫
a

∑Nx
i=1 aµ(da, xi). In each

simulation period, we use a bisection method to obtain the equilibrium factor prices as follows:

1. Set an initial range of (wL, wH) and calculate the aggregate labor demand Ld = (1 −

α)
1
α (zk/w)

1
αK implied by the firm’s FOC for each w. Note that r is obtained by using

the relationship r = z
1
α
k α
(

w
1−α

)α−1
α − δ, implied jointly by (8) and (9).

2. Calculate the aggregate effi ciency unit of labor supply Ls at each w and make sure that the

excess labor demand (Ld − Ls) is positive at wL and it is negative at wH .

3. Compute w̃ = wL+wH
2 and obtain Ld − Ls at w̃. If Ld − Ls > 0, set wL = w̃; otherwise, set

wH = w̃.

4. Continue updating (wL, wH) until |wL − wH | is small enough.

Taking the measure of households µ(a, xi), the aggregate state (K, zk), and factor prices w

and r as given, we compute the aggregate effi ciency unit of labor supply Ls(K, zk) by using the

threshold asset a∗(xi,K, zk) for each individual productivity. Specifically, we solve (18) and (19)

given the expected value function in the next period using interpolation. Note that we use the

valued function obtained in the inner loop and the forecasting rule (14) for K̂ ′ = Γ(K, zk) which is

not on the grid points of K. Then, the individual household decision rules are given by

n = gn(a, xi,K, zk) =


n̄ if a < a∗(xi,K, zk),

0 otherwise,

where a∗(xi;K, z) is the level such that V E(a∗(xi,K, z), xi,K, zk) = V N (a∗(xi,K, z), xi,K, zk).

Having n = gn(a, xi,K, zk) for each grid point (a, xi) on µ at hand, the aggregate effi ciency unit

of labor supply is obtained by Ls(K, zk) =
∫
a

∑Nx
i=1 xign(a, xi,K, zk)µ(da, xi). After finding the
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market-clearing prices, we update the measure of households in the next period by using

a′ = ga(a, xi,K, zk) =


gE(a, xi,K, zk) if a < a∗(xi,K, zk),

gN (a, xi,K, zk) otherwise,

and the stochastic process for xi. We simulate the economy for 10,000 periods, as in Khan and

Thomas (2008).

Finally, the coeffi cients (a0, a1, a2, b0, b1, b2) in the forecasting rules

logK ′ = a0 + a1 logK + a2 log z, (20)

logw = b0 + b1 logK + a2 log z, (21)

are updated by ordinary least squares with the simulated sequence of {K ′, w,K, z}. Our parametric

assumption on the forecasting rules are the same as those in Chang and Kim (2007; 2014) and

Takahashi (2014; 2018). We repeat the whole procedure of the inner and outer loops until the

coeffi cients in the forecasting rules converge.

As is clear in the forecasting rules (20) and (21), households predict prices and the future

distributions of capital only with the mean capital stock. Therefore, it is important to check

whether the equilibrium forecast rules are precise or not. We summarize results for the accuracy of

the forecasting rules for the future mean capital stock K ′ and for the wage w in Table A1. It is clear

that all R2 are very high in both specifications of the model. We also present the accuracy statistic

proposed by Den Haan (2010). Since our dependent variables are in logs, we multiply the statistics

by 100 to interpret them as percentage errors. We find that the mean errors are suffi ciently small

(considerably less than 0.1 percent) and the maximum errors are also reasonably small ranging

around 0.5-0.6 percent for both models.

F.2 Impulse response functions

To compute impulse response functions, we first simulate the economy for a suffi ciently long time

so that the economy reaches the stochastic steady state (Coeurdacier et al., 2015). Our results use

100 periods for this, and the results do not change with longer periods. Next, we hit the economy
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Table A1: Estimates and accuracy of forecasting rules

Model Dependent Coeffi cient Den-Haan (2010)
variable Const. logK log z R2 Mean (%) Max (%)

Model (HA-T) logK ′ 0.1184 0.9533 0.0993 .99998 0.0986 0.5140
logw -0.2884 0.4544 0.7014 .99763 0.0983 0.6138

Model (HA-N) logK ′ 0.1231 0.9512 0.0983 .99998 0.0894 0.4954
logw -0.3643 0.4873 0.7372 .99864 0.0759 0.5153

with an exogenous disturbance to z (−2%), which then follows the AR(1) process with no further

shocks. We let the economy evolve according to these shock realizations. The economy is simulated

long enough so that it goes back to the original stochastic steady state. In our exercises, 200 periods

are long enough for the economy to return to the steady state.

Because we solve the model using a Markov chain for the TFP shocks, it is a non-trivial task to

obtain impulse response functions according to its original continuous process. We construct the

impulse responses based on the weighted averages using the linear interpolation for z. Specifically,

given a value of z, which follows the original AR(1) process, we compute the weight for z by

ωz = (zi+1 − z)/(zi+1 − zi) where z ∈ [zi, zi+1] and zi and zi+1 are the two nearest states of the

Markov chain. Taking K as given, we calculate the individual decision rules ga(a, xi;K, zk) and

gn(a, xi;K, zk) for each k = i and i + 1. Note that the market-clearing factor prices are obtained

for each k. The individual decision rules and the equilibrium prices are obtained as the weighted

averages such as

ga(a, xi;K, z) = ωzga(a, xi;K, zi) + (1− ωz)ga(a, xi;K, zi+1),

gn(a, xi;K, z) = ωzgn(a, xi;K, zi) + (1− ωz)gn(a, xi;K, zi+1),

w(K, z) = ωzw(K, zi) + (1− ωz)w(K, zi+1),

r(K, z) = ωzr(K, zi) + (1− ωz)r(K, zi+1).
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